Carbon nanotube reinforced polyurea coating for protective applications
Carbon nanotubes are unique nanostructures which exhibits exceptional electrical, thermal and mechanical properties. The reduction of reinforcement size to the nanoscale have provided immerse opportunities to modify the properties of many engineering materials for use in countless applications. As a...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/76728 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-76728 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-767282023-03-04T15:36:53Z Carbon nanotube reinforced polyurea coating for protective applications Chia, Yen Chen Zhong School of Materials Science and Engineering DRNTU::Engineering::Materials::Composite materials DRNTU::Engineering::Nanotechnology Carbon nanotubes are unique nanostructures which exhibits exceptional electrical, thermal and mechanical properties. The reduction of reinforcement size to the nanoscale have provided immerse opportunities to modify the properties of many engineering materials for use in countless applications. As a result, this has attracted the interest of many academic and industrial researchers. The aim of this project is to study the effect of mechanical properties of carbon nanotube (CNT) reinforced nanocomposites. Polyurea was prepared based on diamine and isocyanate components and fabricated via in-situ polymerization. Functionalized multi-wall carbon nanotubes (MWCNTs) were used to enhance the interfacial adhesion between the polymer matrix and nanofiller reinforcement. The effect of concentration of CNT (0.05wt% - 0.50wt%) on the mechanical properties of the polyurea based nanocomposites was evaluated by tensile tests. The dispersion and interfacial bonding between the CNT and polyurea matrix were evaluated by Scanning Electron Microscope (SEM). The results showed enhancement of mechanical properties when the CNT are finely dispersed in the polyurea matrix and also suggests that mechanical mixing alone is not able to disperse the CNT. The paper also discusses and investigates the fabrication process parameters which have led to a degradation of mechanical properties. Bachelor of Engineering (Materials Engineering) 2019-04-08T05:24:20Z 2019-04-08T05:24:20Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/76728 en Nanyang Technological University 40 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Composite materials DRNTU::Engineering::Nanotechnology |
spellingShingle |
DRNTU::Engineering::Materials::Composite materials DRNTU::Engineering::Nanotechnology Chia, Yen Carbon nanotube reinforced polyurea coating for protective applications |
description |
Carbon nanotubes are unique nanostructures which exhibits exceptional electrical, thermal and mechanical properties. The reduction of reinforcement size to the nanoscale have provided immerse opportunities to modify the properties of many engineering materials for use in countless applications. As a result, this has attracted the interest of many academic and industrial researchers. The aim of this project is to study the effect of mechanical properties of carbon nanotube (CNT) reinforced nanocomposites. Polyurea was prepared based on diamine and isocyanate components and fabricated via in-situ polymerization. Functionalized multi-wall carbon nanotubes (MWCNTs) were used to enhance the interfacial adhesion between the polymer matrix and nanofiller reinforcement. The effect of concentration of CNT (0.05wt% - 0.50wt%) on the mechanical properties of the polyurea based nanocomposites was evaluated by tensile tests. The dispersion and interfacial bonding between the CNT and polyurea matrix were evaluated by Scanning Electron Microscope (SEM). The results showed enhancement of mechanical properties when the CNT are finely dispersed in the polyurea matrix and also suggests that mechanical mixing alone is not able to disperse the CNT. The paper also discusses and investigates the fabrication process parameters which have led to a degradation of mechanical properties. |
author2 |
Chen Zhong |
author_facet |
Chen Zhong Chia, Yen |
format |
Final Year Project |
author |
Chia, Yen |
author_sort |
Chia, Yen |
title |
Carbon nanotube reinforced polyurea coating for protective applications |
title_short |
Carbon nanotube reinforced polyurea coating for protective applications |
title_full |
Carbon nanotube reinforced polyurea coating for protective applications |
title_fullStr |
Carbon nanotube reinforced polyurea coating for protective applications |
title_full_unstemmed |
Carbon nanotube reinforced polyurea coating for protective applications |
title_sort |
carbon nanotube reinforced polyurea coating for protective applications |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/76728 |
_version_ |
1759856624480026624 |