Sensor system design for respiratory sound analysis

When we breathe, our lungs and airways produce a variety of different sounds. When a person is suffering from respiratory diseases, the sounds produced, such as wheezes and crackles can be used by doctors to help in the diagnosis of the patient. Thus, if the sounds are detected early, diagnosis and...

Full description

Saved in:
Bibliographic Details
Main Author: Yu, Tian
Other Authors: Ser Wee
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/77223
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-77223
record_format dspace
spelling sg-ntu-dr.10356-772232023-07-07T17:23:10Z Sensor system design for respiratory sound analysis Yu, Tian Ser Wee School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering When we breathe, our lungs and airways produce a variety of different sounds. When a person is suffering from respiratory diseases, the sounds produced, such as wheezes and crackles can be used by doctors to help in the diagnosis of the patient. Thus, if the sounds are detected early, diagnosis and treatment of respiratory illnesses such as asthma and chronic lung diseases can begin as soon as possible. [1] With certain types of respiratory illnesses, it is beneficial for the patient to be able to constantly monitor their breathing. However, current monitoring needs to be done by doctors with specialized equipment and training, making constant monitoring impossible. With a portable respiratory device, the goal of constant monitoring can be achieved. The portable respiratory device consists of a microphone in an acoustic housing in order to amplify respiratory sounds. The microphone is then connected to any device capable of inserting a 3.5mm microphone jack, in this case a mobile phone and the resulting input signals were ran through Matlab, whereby a signal graph for it is generated. The acoustic housings were designed and 3D printed using stainless steel in varying shapes and dimensions to explore and compare the effect of amplification. A total of 3 shapes were produced, cylindrical, conical and parabolic with variations in the diameter and height of each of the shapes. Tests were done with a range of monotone signals with frequencies ranging from 20Hz to 16oooHz, with particular emphasis on the frequency range of 176Hz to 4000Hz. The cylindrical housing had the best amplification results for the lower frequency range and the parabolic housing had the best amplification results for the higher frequency range. A second set of tests were also done with two additional cylindrical housings, c3 and c5, with their diameter and height reduced to half the original value respectively. Of these two housings, reducing the diameter showed slight to somewhat significant improvements in the amplification magnitude while reducing the height only showed very marginal improvements. In conclusion, the acoustic housings play a crucial role in amplifying sound in order for the portable respiratory device to function. This project provided very valuable results as well as limitations on the device which could be utilized for future acoustic devices both in and out of the biomedical field. Bachelor of Engineering (Electrical and Electronic Engineering) 2019-05-17T08:21:15Z 2019-05-17T08:21:15Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/77223 en Nanyang Technological University 76 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Yu, Tian
Sensor system design for respiratory sound analysis
description When we breathe, our lungs and airways produce a variety of different sounds. When a person is suffering from respiratory diseases, the sounds produced, such as wheezes and crackles can be used by doctors to help in the diagnosis of the patient. Thus, if the sounds are detected early, diagnosis and treatment of respiratory illnesses such as asthma and chronic lung diseases can begin as soon as possible. [1] With certain types of respiratory illnesses, it is beneficial for the patient to be able to constantly monitor their breathing. However, current monitoring needs to be done by doctors with specialized equipment and training, making constant monitoring impossible. With a portable respiratory device, the goal of constant monitoring can be achieved. The portable respiratory device consists of a microphone in an acoustic housing in order to amplify respiratory sounds. The microphone is then connected to any device capable of inserting a 3.5mm microphone jack, in this case a mobile phone and the resulting input signals were ran through Matlab, whereby a signal graph for it is generated. The acoustic housings were designed and 3D printed using stainless steel in varying shapes and dimensions to explore and compare the effect of amplification. A total of 3 shapes were produced, cylindrical, conical and parabolic with variations in the diameter and height of each of the shapes. Tests were done with a range of monotone signals with frequencies ranging from 20Hz to 16oooHz, with particular emphasis on the frequency range of 176Hz to 4000Hz. The cylindrical housing had the best amplification results for the lower frequency range and the parabolic housing had the best amplification results for the higher frequency range. A second set of tests were also done with two additional cylindrical housings, c3 and c5, with their diameter and height reduced to half the original value respectively. Of these two housings, reducing the diameter showed slight to somewhat significant improvements in the amplification magnitude while reducing the height only showed very marginal improvements. In conclusion, the acoustic housings play a crucial role in amplifying sound in order for the portable respiratory device to function. This project provided very valuable results as well as limitations on the device which could be utilized for future acoustic devices both in and out of the biomedical field.
author2 Ser Wee
author_facet Ser Wee
Yu, Tian
format Final Year Project
author Yu, Tian
author_sort Yu, Tian
title Sensor system design for respiratory sound analysis
title_short Sensor system design for respiratory sound analysis
title_full Sensor system design for respiratory sound analysis
title_fullStr Sensor system design for respiratory sound analysis
title_full_unstemmed Sensor system design for respiratory sound analysis
title_sort sensor system design for respiratory sound analysis
publishDate 2019
url http://hdl.handle.net/10356/77223
_version_ 1772825333927510016