Design and simulation of key building block for FBG interrogator system

Fiber Bragg grating (FBG) sensors can encode an interest of measurements, such as strain and temperature, into an optical wavelength. A comparative advantage of FBG sensors is their ability to be interrogated in a distributed way using multiplexing techniques. The wavelength-division multiplexing (W...

Full description

Saved in:
Bibliographic Details
Main Author: Wu, Diya
Other Authors: Shum Ping
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/77526
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Fiber Bragg grating (FBG) sensors can encode an interest of measurements, such as strain and temperature, into an optical wavelength. A comparative advantage of FBG sensors is their ability to be interrogated in a distributed way using multiplexing techniques. The wavelength-division multiplexing (WDM) is a fiber-optic communication technology which uses different wavelengths of light to multiplex different optical carrier signals onto a single optical fiber. This technique makes bidirectional communications over a single fiber possible, as well as increases capacity. Thus, in this project, the working principle of the wavelength division de-multiplexer is investigated. Firstly, the behavior of ideal and non-ideal Mach-Zehnder interferometer is analyzed. Both ideal and non-ideal wavelength division de-multiplexers are designed and simulated. The second stage of the project involves a design of actual wavelength-independent directional coupler for a wavelength range of interest of 1260nm to 1340nm. The behavior of the wavelength- independent directional coupler is simulated using COMSOL and MATLAB.