Study of precipitable water vapor from GPS
In this research project, extensive research and analysis were done to find a correlation between various parameter and cloud formation. The GPS dataset used is obtained from Nanyang Technological University Singapore (NTUS) Global Navigation Satellite System (GNSS) and is processed using GNSS-Infer...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/77527 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-77527 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-775272023-07-07T16:18:40Z Study of precipitable water vapor from GPS Tan, Jian Hong Lee Yee Hui School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering In this research project, extensive research and analysis were done to find a correlation between various parameter and cloud formation. The GPS dataset used is obtained from Nanyang Technological University Singapore (NTUS) Global Navigation Satellite System (GNSS) and is processed using GNSS-Inferred Positioning System (GISPY-OASIS) software. Global Mapping Function (GMF) was chosen to process the data after substantial considerations as it is the simplest to implement and the results derived strongly resembles the results obtained from numerical weather model (NWM) Mapping Functions (MF) such as Vienna Mapping Function (VMF1). The focus of this research project will be on the attempt to correlate post-fit residual and rainfall events as there is little to no research on the impact of cloud formation on post-fit residual. Observation of the heatmap and scatterplot of the elevation against post-fit residual values shows a significant amount of errors, mainly due to multi-path effects. Multi-path Stacking map (MPS) algorithm was used to eliminate or minimize the effects of multi-path on the post-fit residual values. The corrected post-fit residual show a good correlation with rainfall as the range of variation of the residual value increases significantly during rainfall events. This led to the use of Standard Deviation (SD) of the corrected post-fit residual values, along with rainfall data from the weather station and weather radar, to plot graphs in time series to observe the trends during rainfall events. It is observed that the SD of the corrected post-fit residual increases significantly during periods with rainfall happening and is comparatively low during non-rainy days. The results of both observation, using weather radar, weather station and GPS data show the potential that post-fit residuals can be integrated into existing algorithms to improve nowcasting’s rainfall prediction. Bachelor of Engineering (Electrical and Electronic Engineering) 2019-05-30T07:32:15Z 2019-05-30T07:32:15Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/77527 en Nanyang Technological University 69 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Tan, Jian Hong Study of precipitable water vapor from GPS |
description |
In this research project, extensive research and analysis were done to find a correlation between various parameter and cloud formation. The GPS dataset used is obtained from Nanyang Technological University Singapore (NTUS) Global Navigation Satellite System (GNSS) and is processed using GNSS-Inferred Positioning System (GISPY-OASIS) software. Global Mapping Function (GMF) was chosen to process the data after substantial considerations as it is the simplest to implement and the results derived strongly resembles the results obtained from numerical weather model (NWM) Mapping Functions (MF) such as Vienna Mapping Function (VMF1). The focus of this research project will be on the attempt to correlate post-fit residual and rainfall events as there is little to no research on the impact of cloud formation on post-fit residual. Observation of the heatmap and scatterplot of the elevation against post-fit residual values shows a significant amount of errors, mainly due to multi-path effects. Multi-path Stacking map (MPS) algorithm was used to eliminate or minimize the effects of multi-path on the post-fit residual values. The corrected post-fit residual show a good correlation with rainfall as the range of variation of the residual value increases significantly during rainfall events. This led to the use of Standard Deviation (SD) of the corrected post-fit residual values, along with rainfall data from the weather station and weather radar, to plot graphs in time series to observe the trends during rainfall events. It is observed that the SD of the corrected post-fit residual increases significantly during periods with rainfall happening and is comparatively low during non-rainy days. The results of both observation, using weather radar, weather station and GPS data show the potential that post-fit residuals can be integrated into existing algorithms to improve nowcasting’s rainfall prediction. |
author2 |
Lee Yee Hui |
author_facet |
Lee Yee Hui Tan, Jian Hong |
format |
Final Year Project |
author |
Tan, Jian Hong |
author_sort |
Tan, Jian Hong |
title |
Study of precipitable water vapor from GPS |
title_short |
Study of precipitable water vapor from GPS |
title_full |
Study of precipitable water vapor from GPS |
title_fullStr |
Study of precipitable water vapor from GPS |
title_full_unstemmed |
Study of precipitable water vapor from GPS |
title_sort |
study of precipitable water vapor from gps |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/77527 |
_version_ |
1772827570376540160 |