Development of smart dressing materials for wound healing

In the early centuries, daily necessities (vinegar, honey, grease and oil) are incorporated into wound dressing in order to maintain and control infection of the wound site. However, these wound dressings are not efficient for the treatment of chronic non-healing wounds. Over many centuries, the mod...

Full description

Saved in:
Bibliographic Details
Main Author: Chiang, Grace Li Ying
Other Authors: Dalton Tay Chor Yong
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/77727
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-77727
record_format dspace
spelling sg-ntu-dr.10356-777272023-03-04T15:35:49Z Development of smart dressing materials for wound healing Chiang, Grace Li Ying Dalton Tay Chor Yong School of Materials Science and Engineering DRNTU::Engineering::Materials In the early centuries, daily necessities (vinegar, honey, grease and oil) are incorporated into wound dressing in order to maintain and control infection of the wound site. However, these wound dressings are not efficient for the treatment of chronic non-healing wounds. Over many centuries, the modern wound care management has incorporated tissue engineering to fabricate smart wound dressing materials that can deposit collagen to accelerate the wound healing rate and mimic the structural environment of host tissue without causing adverse host response from occurring. With the complex structure of ECM proteins found in the natural waste material that is discarded as surgical waste, human adipose tissue-derived extracellular matrix (Ad-ECM) can be potentially used as the source of ECM. After extracting Ad-ECM, the naturally derived material was assessed to determine whether it is safe to be used by evaluating the lipid and DNA content of the extracted product. From the experimental data, the DNA concentration of the extracted Ad-ECM was less than 50ng/mg with insignificant presence of lipid molecules which proved successful decellularization and delipidation. Decellularized Ad-ECM has considerably poor mechanical properties and low biostability. Hence, homogenization with 1,4-Butanediol diglycidyl ether ≥95% (BDE) crosslinker was carried out to improve the mechanical and thermal properties of the scaffold. It was found that with increasing concentrations of BDE-crosslinker (1w/w%, 2.5w/w% and 5w/w%), the mechanical properties and thermal stability improved with an increasing trend in both the modulus and denaturation temperature. However, the modulus of 5w/w% BDE Ad-ECM was found to be significantly lower than the modulus of native skin tissue. This will not allow the scaffold to withstand the load that is applied to the native skin tissue and it can be prone to damage during handling. Nonetheless, Ad-ECM and BDE-crosslinked Ad-ECM have a porous structure which provides a good housing environment for cells as it can enable the transportation of nutrients to cells and removal of metabolic waste. Therefore, the BDE-crosslinked Ad-ECM have to be further optimized to improve the mechanical properties of this scaffolding material. Bachelor of Engineering (Materials Engineering) 2019-06-04T07:33:09Z 2019-06-04T07:33:09Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/77727 en Nanyang Technological University 49 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials
spellingShingle DRNTU::Engineering::Materials
Chiang, Grace Li Ying
Development of smart dressing materials for wound healing
description In the early centuries, daily necessities (vinegar, honey, grease and oil) are incorporated into wound dressing in order to maintain and control infection of the wound site. However, these wound dressings are not efficient for the treatment of chronic non-healing wounds. Over many centuries, the modern wound care management has incorporated tissue engineering to fabricate smart wound dressing materials that can deposit collagen to accelerate the wound healing rate and mimic the structural environment of host tissue without causing adverse host response from occurring. With the complex structure of ECM proteins found in the natural waste material that is discarded as surgical waste, human adipose tissue-derived extracellular matrix (Ad-ECM) can be potentially used as the source of ECM. After extracting Ad-ECM, the naturally derived material was assessed to determine whether it is safe to be used by evaluating the lipid and DNA content of the extracted product. From the experimental data, the DNA concentration of the extracted Ad-ECM was less than 50ng/mg with insignificant presence of lipid molecules which proved successful decellularization and delipidation. Decellularized Ad-ECM has considerably poor mechanical properties and low biostability. Hence, homogenization with 1,4-Butanediol diglycidyl ether ≥95% (BDE) crosslinker was carried out to improve the mechanical and thermal properties of the scaffold. It was found that with increasing concentrations of BDE-crosslinker (1w/w%, 2.5w/w% and 5w/w%), the mechanical properties and thermal stability improved with an increasing trend in both the modulus and denaturation temperature. However, the modulus of 5w/w% BDE Ad-ECM was found to be significantly lower than the modulus of native skin tissue. This will not allow the scaffold to withstand the load that is applied to the native skin tissue and it can be prone to damage during handling. Nonetheless, Ad-ECM and BDE-crosslinked Ad-ECM have a porous structure which provides a good housing environment for cells as it can enable the transportation of nutrients to cells and removal of metabolic waste. Therefore, the BDE-crosslinked Ad-ECM have to be further optimized to improve the mechanical properties of this scaffolding material.
author2 Dalton Tay Chor Yong
author_facet Dalton Tay Chor Yong
Chiang, Grace Li Ying
format Final Year Project
author Chiang, Grace Li Ying
author_sort Chiang, Grace Li Ying
title Development of smart dressing materials for wound healing
title_short Development of smart dressing materials for wound healing
title_full Development of smart dressing materials for wound healing
title_fullStr Development of smart dressing materials for wound healing
title_full_unstemmed Development of smart dressing materials for wound healing
title_sort development of smart dressing materials for wound healing
publishDate 2019
url http://hdl.handle.net/10356/77727
_version_ 1759856290161491968