Foreign exchange prediction and trading using neural networks
Foreign exchange Market is one of the most important financial movement in the world and for the past few years, researchers have been trying to find a way to have an edge in forecasting exchange prices. With recent development in computer technology, artificial intelligence with algorithm has been...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/77779 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-77779 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-777792023-07-07T17:00:19Z Foreign exchange prediction and trading using neural networks Aung, Htet Myet Wang Lipo School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Foreign exchange Market is one of the most important financial movement in the world and for the past few years, researchers have been trying to find a way to have an edge in forecasting exchange prices. With recent development in computer technology, artificial intelligence with algorithm has been a very hot topic in financial market. This kind of machine learning neural network could become an important figure in the future of financial market. There are various types of neural networks such as feedforward neural networks, recurrent neural networks. This project aims to cover some of the methods used in neural networks to forecast the exchange rate. Feed forward neural network with external variables for currency such as gold, crude oil price has been used to predict US dollar against Japanese Yen, Euro against USD and Great Britain Pound. The result from this neural network will be compared against a published research paper and Non-linear Autoregressive model with Exogenous Inputs. The neural network models are implemented by using MATLAB software and performance of each model will be determined by Means Square Error and Correlation Coefficient values in MATLAB. Bachelor of Engineering (Electrical and Electronic Engineering) 2019-06-06T05:56:58Z 2019-06-06T05:56:58Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/77779 en Nanyang Technological University 49 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Aung, Htet Myet Foreign exchange prediction and trading using neural networks |
description |
Foreign exchange Market is one of the most important financial movement in the world and for the past few years, researchers have been trying to find a way to have an edge in forecasting exchange prices. With recent development in computer technology, artificial intelligence with algorithm has been a very hot topic in financial market. This kind of machine learning neural network could become an important figure in the future of financial market. There are various types of neural networks such as feedforward neural networks, recurrent neural networks. This project aims to cover some of the methods used in neural networks to forecast the exchange rate. Feed forward neural network with external variables for currency such as gold, crude oil price has been used to predict US dollar against Japanese Yen, Euro against USD and Great Britain Pound. The result from this neural network will be compared against a published research paper and Non-linear Autoregressive model with Exogenous Inputs. The neural network models are implemented by using MATLAB software and performance of each model will be determined by Means Square Error and Correlation Coefficient values in MATLAB. |
author2 |
Wang Lipo |
author_facet |
Wang Lipo Aung, Htet Myet |
format |
Final Year Project |
author |
Aung, Htet Myet |
author_sort |
Aung, Htet Myet |
title |
Foreign exchange prediction and trading using neural networks |
title_short |
Foreign exchange prediction and trading using neural networks |
title_full |
Foreign exchange prediction and trading using neural networks |
title_fullStr |
Foreign exchange prediction and trading using neural networks |
title_full_unstemmed |
Foreign exchange prediction and trading using neural networks |
title_sort |
foreign exchange prediction and trading using neural networks |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/77779 |
_version_ |
1772828149058371584 |