Sound based analysis of obstructive sleep apnea

Obstructive Sleep Apnea (OSA) refers to when an individual constantly experience pause or shallow breathing during their sleep. The current gold standard for OSA analysis is to use Polysomnography (PSG) system where individuals are required to sleep overnight in hospitals. During the test, individua...

Full description

Saved in:
Bibliographic Details
Main Author: Soh, Wen Wei
Other Authors: Ser Wee
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78137
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-78137
record_format dspace
spelling sg-ntu-dr.10356-781372023-07-07T17:01:11Z Sound based analysis of obstructive sleep apnea Soh, Wen Wei Ser Wee School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Obstructive Sleep Apnea (OSA) refers to when an individual constantly experience pause or shallow breathing during their sleep. The current gold standard for OSA analysis is to use Polysomnography (PSG) system where individuals are required to sleep overnight in hospitals. During the test, individuals will be wired to multiple sensing systems to collect data which will be manually processed by sleep technologists to determine if an individual suffers from sleep disorder. However, this process is time consuming and challenging as huge amount of data need to be analysed. The aim of this project is to develop a machine learning based algorithm that can detect presence of OSA. It will be developed using MATLAB based on the snoring data. The algorithm includes three stages namely, Feature Extraction, Feature Selection and Classification. Features such as Mel Frequency Cepstral Coefficient (MFCC), Formant frequency and Kurtosis were extracted from the audio data. Followed by feature selection using Fisher’s Ratio to compute and select the more discriminative features. Lastly, the selected features will be used to perform classification. In this project, the classifier used is Support Vector Machine (SVM). This project achieved an accuracy, sensitivity and specificity of 96.7%, 100% and 93.3% respectively for the testing data. This result is predicted using the first training model which has an accuracy of up to 100% when all selected features are considered. In this project, Additive White Gaussian Noise (AWGN) was added to the original audio data and subsequently included as part of testing data. The purpose is to determine the effect on accuracy of prediction results when noise is added. This project has an accuracy of up to 96.0% when SNR is more than 50dB. Hence, it indicates that the model is robust to noise when SNR of more than 50dB is added as signal becomes clearer. Bachelor of Engineering (Electrical and Electronic Engineering) 2019-06-12T07:17:55Z 2019-06-12T07:17:55Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/78137 en Nanyang Technological University 52 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Soh, Wen Wei
Sound based analysis of obstructive sleep apnea
description Obstructive Sleep Apnea (OSA) refers to when an individual constantly experience pause or shallow breathing during their sleep. The current gold standard for OSA analysis is to use Polysomnography (PSG) system where individuals are required to sleep overnight in hospitals. During the test, individuals will be wired to multiple sensing systems to collect data which will be manually processed by sleep technologists to determine if an individual suffers from sleep disorder. However, this process is time consuming and challenging as huge amount of data need to be analysed. The aim of this project is to develop a machine learning based algorithm that can detect presence of OSA. It will be developed using MATLAB based on the snoring data. The algorithm includes three stages namely, Feature Extraction, Feature Selection and Classification. Features such as Mel Frequency Cepstral Coefficient (MFCC), Formant frequency and Kurtosis were extracted from the audio data. Followed by feature selection using Fisher’s Ratio to compute and select the more discriminative features. Lastly, the selected features will be used to perform classification. In this project, the classifier used is Support Vector Machine (SVM). This project achieved an accuracy, sensitivity and specificity of 96.7%, 100% and 93.3% respectively for the testing data. This result is predicted using the first training model which has an accuracy of up to 100% when all selected features are considered. In this project, Additive White Gaussian Noise (AWGN) was added to the original audio data and subsequently included as part of testing data. The purpose is to determine the effect on accuracy of prediction results when noise is added. This project has an accuracy of up to 96.0% when SNR is more than 50dB. Hence, it indicates that the model is robust to noise when SNR of more than 50dB is added as signal becomes clearer.
author2 Ser Wee
author_facet Ser Wee
Soh, Wen Wei
format Final Year Project
author Soh, Wen Wei
author_sort Soh, Wen Wei
title Sound based analysis of obstructive sleep apnea
title_short Sound based analysis of obstructive sleep apnea
title_full Sound based analysis of obstructive sleep apnea
title_fullStr Sound based analysis of obstructive sleep apnea
title_full_unstemmed Sound based analysis of obstructive sleep apnea
title_sort sound based analysis of obstructive sleep apnea
publishDate 2019
url http://hdl.handle.net/10356/78137
_version_ 1772827341015220224