Image processing algorithms for medical applications : B

In order to reduce the amount of noise in an image, image processing algorithms need to be carried out. This is an important procedure as image processing may result in noise corruptions either during transmission, acquisition or conversion. Such noise corruptions diminish the images’ visual quality...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Shamir Kamaluddin
Other Authors: Mohammed Yakoob Siyal
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78177
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-78177
record_format dspace
spelling sg-ntu-dr.10356-781772023-07-07T16:31:08Z Image processing algorithms for medical applications : B Muhammad Shamir Kamaluddin Mohammed Yakoob Siyal School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision In order to reduce the amount of noise in an image, image processing algorithms need to be carried out. This is an important procedure as image processing may result in noise corruptions either during transmission, acquisition or conversion. Such noise corruptions diminish the images’ visual quality and could also cause inaccuracy in the details of the image. Hence, there is a need for image processing algorithms, which restores an image such that the image’s visual quality is improved, producing a more precise details of the subject. In the field of medicine, in particular, having an accurate depiction and clear medical image is extremely crucial as doctors rely on medical images to analyze a patient’s internal structure and to diagnose accordingly. Should there be a lack of clarity in the image, it could potentially lead to inaccurate analysis and improper diagnosis. In this thesis, noise removal will be done using eight filters: Mean, Median, Gaussian, Wiener, Guided, Non-local mean, Diffuse and Bilateral filter. The efficacy of each filter will be analyzed using Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Metric (SSIM), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Image Enhancing Factor (IEF). Each of the eight filters will be applied to four types of medical images namely, X-rays, Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound. These four types of medical images will be corrupted separately with eight different types of noises namely, Poisson, Gaussian, Speckle, Rayleigh, Uniform, Impulse, Local Variance and Salt and Pepper noise. The noise intensity of each type of noise will be varied from 25% to 70% using an interval of 15% when corrupting he medical images. The tests will be carried out in two types of image formats which are greyscale format and RGB format. In order to ensure that the results prove the filter’s capabilities, the experiment was carried out on a sample size of 200 medical images – 50 samples for each type of medical image. By analyzing the average performance of each filter on each medical image corrupted by a certain type of noise at varying noise intensity and testing them on two different image formats, a conclusion was derived on the type of filter that was most effective in denoising an image and most time efficient under each circumstance. Bachelor of Engineering (Electrical and Electronic Engineering) 2019-06-13T02:31:09Z 2019-06-13T02:31:09Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/78177 en Nanyang Technological University 158 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision
Muhammad Shamir Kamaluddin
Image processing algorithms for medical applications : B
description In order to reduce the amount of noise in an image, image processing algorithms need to be carried out. This is an important procedure as image processing may result in noise corruptions either during transmission, acquisition or conversion. Such noise corruptions diminish the images’ visual quality and could also cause inaccuracy in the details of the image. Hence, there is a need for image processing algorithms, which restores an image such that the image’s visual quality is improved, producing a more precise details of the subject. In the field of medicine, in particular, having an accurate depiction and clear medical image is extremely crucial as doctors rely on medical images to analyze a patient’s internal structure and to diagnose accordingly. Should there be a lack of clarity in the image, it could potentially lead to inaccurate analysis and improper diagnosis. In this thesis, noise removal will be done using eight filters: Mean, Median, Gaussian, Wiener, Guided, Non-local mean, Diffuse and Bilateral filter. The efficacy of each filter will be analyzed using Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Metric (SSIM), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Image Enhancing Factor (IEF). Each of the eight filters will be applied to four types of medical images namely, X-rays, Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound. These four types of medical images will be corrupted separately with eight different types of noises namely, Poisson, Gaussian, Speckle, Rayleigh, Uniform, Impulse, Local Variance and Salt and Pepper noise. The noise intensity of each type of noise will be varied from 25% to 70% using an interval of 15% when corrupting he medical images. The tests will be carried out in two types of image formats which are greyscale format and RGB format. In order to ensure that the results prove the filter’s capabilities, the experiment was carried out on a sample size of 200 medical images – 50 samples for each type of medical image. By analyzing the average performance of each filter on each medical image corrupted by a certain type of noise at varying noise intensity and testing them on two different image formats, a conclusion was derived on the type of filter that was most effective in denoising an image and most time efficient under each circumstance.
author2 Mohammed Yakoob Siyal
author_facet Mohammed Yakoob Siyal
Muhammad Shamir Kamaluddin
format Final Year Project
author Muhammad Shamir Kamaluddin
author_sort Muhammad Shamir Kamaluddin
title Image processing algorithms for medical applications : B
title_short Image processing algorithms for medical applications : B
title_full Image processing algorithms for medical applications : B
title_fullStr Image processing algorithms for medical applications : B
title_full_unstemmed Image processing algorithms for medical applications : B
title_sort image processing algorithms for medical applications : b
publishDate 2019
url http://hdl.handle.net/10356/78177
_version_ 1772827820741885952