Research on prediction of traffic flow based on GEBF-OSFNN

Efficient transport and communication systems lay the groundwork for Singapore’s urban development. However, growing population, economic and commercial progress, and high number of vehicle ownership licenses have resulted in overcrowding and congestions. Hence, it is imperative to use intelligent s...

全面介紹

Saved in:
書目詳細資料
主要作者: Badjate, Harsh Vijaykumar
其他作者: Justin Dauwels
格式: Final Year Project
語言:English
出版: 2019
主題:
在線閱讀:http://hdl.handle.net/10356/78251
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Efficient transport and communication systems lay the groundwork for Singapore’s urban development. However, growing population, economic and commercial progress, and high number of vehicle ownership licenses have resulted in overcrowding and congestions. Hence, it is imperative to use intelligent systems to analyse, predict and control traffic, saving resources. Intelligent transport system (ITS) was invented that monitors and collects traffic data using surveillance devices and processes that data to help curb congestion and avoid accidents. As the backbone of ITS, traffic guidance systems rely heavily on accurate prediction of traffic flow. Hence, traffic flow prediction has been an important research subject. In this project, chaos theory, and Generalised Ellipsoidal Basis Function Based Online Self-Constructing Fuzzy Neural Network (GEBF-OSFNN) is adopted to predict short-term traffic flow. The proposed technique will facilitate traffic analysis and prediction capabilities as well as provide a comprehensive platform for traffic management solutions.