Temperature and moisture effects on the failure of composites

Composite tidal turbine blades are subjected to seawater degradation and mechanical loadings from the operating environment. However, there is limited research on the effects of moisture and glass transition temperature on the mechanical and dynamic properties of composite made using Vacuum Assisted...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Bo Qiang
Other Authors: Chai Gin Boay
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78294
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Composite tidal turbine blades are subjected to seawater degradation and mechanical loadings from the operating environment. However, there is limited research on the effects of moisture and glass transition temperature on the mechanical and dynamic properties of composite made using Vacuum Assisted Resin Transfer Method (VARTM). Hence, this project will further explore the correlation between void, moisture and strength of composite material, fabricated from T300 Carbon Fibers and Epikote RIMR 135 resin. The main purpose of this project is to analyse the moisture equilibrium of Carbon Fiber Reinforced Polymer (CFRP) composite through moisture absorption test. In addition, Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimeter (DSC) were used to determine effects of various curing conditions with respect to the glass temperature (Tg). In this project, all the CFRP composite specimens were fabricated through VARTM. Along with Epikote resins, the composite specimens were immersed in the seawater at 60°C for 30 days before the experimental testing.