Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation

Over the past decade, greenhouse gases are constantly being increased, and one of the main greenhouse gases is carbon dioxide (CO2). The increasing levels of CO2 is becoming a major concern, and researchers around the world are finding ways to reduce CO2. One popular performed method of Carbon Captu...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Wee Jiat
Other Authors: Anutosh Chakraborty
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78571
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-78571
record_format dspace
spelling sg-ntu-dr.10356-785712023-03-04T18:36:23Z Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation Ong, Wee Jiat Anutosh Chakraborty School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Over the past decade, greenhouse gases are constantly being increased, and one of the main greenhouse gases is carbon dioxide (CO2). The increasing levels of CO2 is becoming a major concern, and researchers around the world are finding ways to reduce CO2. One popular performed method of Carbon Capture and Storage (CCS) is in the underground. Adsorption is another method, where CO2 can be captured in the confined space of adsorbent materials. Zeolites and Metal Organic Frameworks (MOFs) are generally used in CCS. Therefore, the project deals with the study of CO2 gas adsorption employing volumetric methods. The research objectives are to measure the characteristics of zeolites and MOFs by N2 adsorption method, and finally the CO2 uptakes are measured for various temperatures and pressures. In this project, two zeolites, namely AQSOA-Z01 and AQSOA-Z02, and two MOFs, namely Aluminium Fumarate and MIL-101 (Cr), are experimentally tested using a volumetric setup. The experiments are conducted at temperatures ranging from 280K to 320K, at pressures up to 10 bar. The calibration of the equipment is performed to minimise errors, thus improving the accuracy as well as the precision of raw experimental data. Although the synthetization of adsorbent requires the use of energy hence introducing more CO2 into the atmosphere, the experimental analysis of CO2 adsorption is justifiable as the captured CO2 can be further reused for industrial applications, i.e., production of welding systems, refrigerated systems, and carbonated beverages. The amount of CO2 is calculated as a function of time for various temperature and pressure. Based on the data under equilibrium conditions, isotherms are plotted. Later, isosteric heats with respect to various uptakes are calculated by pressure-temperature uptake co-ordinate system i.e. Clausius-Clapeyron equation for three different temperatures of 280K, 300K and 320K. At 300K, AQSOA-Z02 zeolite shows the best CO2 adsorption capacity at low pressure (below 2 bar) as compared with other adsorbents, which is a new finding in the project. However, at higher pressure (above 2 bar), MIL-101 (Cr) MOF shows the best uptake results. On the other hand, the uptake rates for ALFUM are found faster at 300K. Bachelor of Engineering (Mechanical Engineering) 2019-06-24T02:26:28Z 2019-06-24T02:26:28Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/78571 en Nanyang Technological University 106 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Ong, Wee Jiat
Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
description Over the past decade, greenhouse gases are constantly being increased, and one of the main greenhouse gases is carbon dioxide (CO2). The increasing levels of CO2 is becoming a major concern, and researchers around the world are finding ways to reduce CO2. One popular performed method of Carbon Capture and Storage (CCS) is in the underground. Adsorption is another method, where CO2 can be captured in the confined space of adsorbent materials. Zeolites and Metal Organic Frameworks (MOFs) are generally used in CCS. Therefore, the project deals with the study of CO2 gas adsorption employing volumetric methods. The research objectives are to measure the characteristics of zeolites and MOFs by N2 adsorption method, and finally the CO2 uptakes are measured for various temperatures and pressures. In this project, two zeolites, namely AQSOA-Z01 and AQSOA-Z02, and two MOFs, namely Aluminium Fumarate and MIL-101 (Cr), are experimentally tested using a volumetric setup. The experiments are conducted at temperatures ranging from 280K to 320K, at pressures up to 10 bar. The calibration of the equipment is performed to minimise errors, thus improving the accuracy as well as the precision of raw experimental data. Although the synthetization of adsorbent requires the use of energy hence introducing more CO2 into the atmosphere, the experimental analysis of CO2 adsorption is justifiable as the captured CO2 can be further reused for industrial applications, i.e., production of welding systems, refrigerated systems, and carbonated beverages. The amount of CO2 is calculated as a function of time for various temperature and pressure. Based on the data under equilibrium conditions, isotherms are plotted. Later, isosteric heats with respect to various uptakes are calculated by pressure-temperature uptake co-ordinate system i.e. Clausius-Clapeyron equation for three different temperatures of 280K, 300K and 320K. At 300K, AQSOA-Z02 zeolite shows the best CO2 adsorption capacity at low pressure (below 2 bar) as compared with other adsorbents, which is a new finding in the project. However, at higher pressure (above 2 bar), MIL-101 (Cr) MOF shows the best uptake results. On the other hand, the uptake rates for ALFUM are found faster at 300K.
author2 Anutosh Chakraborty
author_facet Anutosh Chakraborty
Ong, Wee Jiat
format Final Year Project
author Ong, Wee Jiat
author_sort Ong, Wee Jiat
title Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
title_short Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
title_full Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
title_fullStr Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
title_full_unstemmed Study of CO2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
title_sort study of co2 adsorption into various functional adsorbents : a thermodynamic framework with experimental investigation
publishDate 2019
url http://hdl.handle.net/10356/78571
_version_ 1759853408348536832