Motive imagery scoring based on deep neural network

The purpose of this study is to develop a method for scoring the motive imageries in text materials. According to Winter’s motive scoring system, there are three different kinds of motive imageries and each of them is given detailed definitions and scoring rules. But it’s difficult and also time-con...

Full description

Saved in:
Bibliographic Details
Main Author: Yu, Sicheng
Other Authors: Chen Lihui
Format: Theses and Dissertations
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78596
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The purpose of this study is to develop a method for scoring the motive imageries in text materials. According to Winter’s motive scoring system, there are three different kinds of motive imageries and each of them is given detailed definitions and scoring rules. But it’s difficult and also time-consuming to implement these rules manually. The traditional machine learning methods also have difficulties in extracting features. With the evolution and development of deep learning, deep neural networks have played an important role in data processing. In the study, three different deep learning models, including TextCNN, LSTM and Bidirectional LSTM with attention mechanism, are applied to score the motives. The performances of three models are evaluated, compared, and reported in this thesis.