A study of vibration control on Chip Scale Atomic Clock (CSAC) for airborne and space applications

Chip Scale Atomic Clocks (CSACs) are relatively new technology which have emerged within the past few years. The constant need to squeeze more power into this small component results in a product with low power consumption, high energy, and accuracy. These clocks are targeted for use on airborne and...

Full description

Saved in:
Bibliographic Details
Main Author: Divakaran, Dinesh
Other Authors: Li King Ho Holden
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78711
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Chip Scale Atomic Clocks (CSACs) are relatively new technology which have emerged within the past few years. The constant need to squeeze more power into this small component results in a product with low power consumption, high energy, and accuracy. These clocks are targeted for use on airborne and space applications to provide accurate timing for onboard computers in the event of a Global Positioning System (GPS) malfunction or drift, which are corrected for by the CSAC readings. This is because CSACs are known to display excellent stability and accuracy timing in short term periods, whereas GPS outdoes the CSAC over long periods. The CSAC’s effectiveness is known to reduce and hinder operation during manoeuvres of high vibration on board airborne applications during take-off and landing, and space applications during launching. This project studies the Unmanned Aerial Vehicle (UAV) as an airborne application and the Cube Sat as a space application. This project focuses on vibration isolation of the CSAC mounted on a Printed Circuit Board (PCB) to ensure these phases of flight allow it to function as referenced with MIL-STD-810G, Method 514.6, Procedure 1. Vibration isolation is tested with various configurations of damping solutions and mounting locations.