Deep-subwavelength focusing with self-similar chain of spoof plasmonic resonators at terahertz frequency

The terahertz wave is an electromagnetic wave that has not been fully developed between microwave and infrared. Due to its penetrating robbing, frequency, and high spatial resolution, it is widely used in various fields. The acquisition of high-energy terahertz radiation sources is the premise of te...

Full description

Saved in:
Bibliographic Details
Main Author: Dong, Zihao
Other Authors: Luo Yu
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/78824
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The terahertz wave is an electromagnetic wave that has not been fully developed between microwave and infrared. Due to its penetrating robbing, frequency, and high spatial resolution, it is widely used in various fields. The acquisition of high-energy terahertz radiation sources is the premise of terahertz development. It has been recently shown that extremely thin textured copper disks can induce the multipolar spoof localized surface plasmons. The article is based on the self-similar chain of extremely thin textured copper disks as plasmonic resonators, the enhancement of terahertz radiation is realized from the simulation software. This system is a self-similar chain of several plasmonic resonators that gradually reduce size and separation. The results of the project can find potential applications in the terahertz field.