On gridless sparse methods for line spectral estimation from complete and incomplete data

This paper is concerned about sparse, continuous frequency estimation in line spectral estimation, and focused on developing gridless sparse methods which overcome grid mismatches and correspond to limiting scenarios of existing grid-based approaches, e.g., ℓ1 optimization and SPICE, with an infinit...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Yang, Zai, Xie, Lihua
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/79346
http://hdl.handle.net/10220/38517
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This paper is concerned about sparse, continuous frequency estimation in line spectral estimation, and focused on developing gridless sparse methods which overcome grid mismatches and correspond to limiting scenarios of existing grid-based approaches, e.g., ℓ1 optimization and SPICE, with an infinitely dense grid. We generalize AST (atomic-norm soft thresholding) to the case of nonconsecutively sampled data (incomplete data) inspired by recent atomic norm based techniques. We present a gridless version of SPICE (gridless SPICE, or GLS), which is applicable to both complete and incomplete data without the knowledge of noise level. We further prove the equivalence between GLS and atomic norm-based techniques under different assumptions of noise. Moreover, we extend GLS to a systematic framework consisting of model order selection and robust frequency estimation, and present feasible algorithms for AST and GLS. Numerical simulations are provided to validate our theoretical analysis and demonstrate performance of our methods compared to existing ones.