Erasure temperature measurements of heat assisted magnetic recording media
For heat assisted magnetic recording (HAMR) media development, measurement of erasure temperature (Te) is interesting and important for practical HAMR testing and applications. Here, we present an investigation on Te measurements of L10 ordered FePt granular HAMR media made using a Laser Heating (LH...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/79421 http://hdl.handle.net/10220/25351 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | For heat assisted magnetic recording (HAMR) media development, measurement of erasure temperature (Te) is interesting and important for practical HAMR testing and applications. Here, we present an investigation on Te measurements of L10 ordered FePt granular HAMR media made using a Laser Heating (LH) method on a home-built HAMR write test system versus that from a bulk heating approach. The HAMR write test system provides HAMR writing, micro-MOKE (magneto-optical Kerr effect) signal detection, and MOKE imaging functions at the same testing spot in one single system. Magnetic force microscopy (MFM) and magnetic Kerr microscopy observations of the scanning laser induced degradation/erasure/demagnetization of the pre-recorded magnetic patterns on disk media (over a wide area of a few hundreds of μm2) show that the magnetic (MFM and Kerr signal) amplitude of the pre-recorded magnetic patterns decreases slowly with increasing laser power (Pw) (/temperature rise) for Pw ≲ 66 mW and then drops sharply to nearly zero for Pw ≥ ∼72 mW (the laser power corresponding to complete thermal erasure when the media temperature is ∼Te). It was further found that this trend of magnetic amplitude reduction with increased Pw is similar to that from magnetic amplitude decrease of pre-recorded magnetic patterns with increased bulk heating temperature. The temperature for complete erasure at laser power, Pw = 72 mW for the LH method, corresponds therefore to ∼650 K (≈Te) for the bulk heating methods. Besides fast measurement, LH (as a comparable and viable approach for erasure measurement) is dynamic, localized, and has time scales closer to practical HAMR situation. |
---|