Reliability assessment of stability of underground rock caverns

Conventional stability assessment of underground tunnels and caverns involves the determination of a factor of safety in which failure is assumed to occur when the load (stress) of the system exceeds the resistance. It is widely recognized that a deterministic analysis of the factor of safety gives...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Goh, Anthony Teck Chee, Zhang, Wengang
مؤلفون آخرون: School of Civil and Environmental Engineering
التنسيق: مقال
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/79469
http://hdl.handle.net/10220/8593
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Conventional stability assessment of underground tunnels and caverns involves the determination of a factor of safety in which failure is assumed to occur when the load (stress) of the system exceeds the resistance. It is widely recognized that a deterministic analysis of the factor of safety gives only a partial representation of the true margin of safety, since the uncertainties in the design parameters affect the probability of failure. In this paper, a simplified procedure is proposed for evaluating the probability of stress-induced instability for deep underground rock caverns for preliminary design applications. Extensive parametric studies were carried out using a finite difference program to determine the factor of safety for caverns of various dimensions and rock mass strength. Subsequently, the limit state surface was determined through an artificial neural network approach following which a simplified reliability method of evaluating the probability of failure was developed.