“Plasmonics” in free space : observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields

Evanescent light can be localized at the nanoscale by resonant absorption in a plasmonic nanoparticle or taper or by transmission through a nanohole. However, a conventional lens cannot focus free-space light beyond half of the wavelength λ. Nevertheless, precisely tailored interference of multiple...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan, Guanghui, Rogers, Edward T. F., Zheludev, Nikolay I.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/79522
http://hdl.handle.net/10220/49060
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Evanescent light can be localized at the nanoscale by resonant absorption in a plasmonic nanoparticle or taper or by transmission through a nanohole. However, a conventional lens cannot focus free-space light beyond half of the wavelength λ. Nevertheless, precisely tailored interference of multiple waves can form a hotspot in free space of an arbitrarily small size, which is known as superoscillation. Here, we report a new type of integrated metasurface interferometry that allows for the first time mapping of fields with a deep subwavelength resolution ~λ/100. The findings reveal that an electromagnetic field near the superoscillatory hotspot has many features similar to those found near resonant plasmonic nanoparticles or nanoholes: the hotspots are surrounded by nanoscale phase singularities and zones where the phase of the superoscillatory field changes more than tenfold faster than a free-propagating plane wave. Areas with high local wavevectors are pinned to phase vortices and zones of energy backflow (~λ/20 in size) that contribute to tightening of the main focal spot size beyond the Abbe–Rayleigh limit. Our observations reveal some analogy between plasmonic nanofocusing of evanescent waves and superoscillatory nanofocusing of free-space waves and prove the fundamental link between superoscillations and superfocusing, offering new opportunities for nanoscale metrology and imaging.