Ordered array of metal particles on semishell separated with ultrathin oxide : fabrication and SERS properties
Metal particles in gap cavities provide an interesting system to achieve hybrid local surface plasmon modes for local field enhancement. Here, we demonstrate a relatively simple method to fabricate Ag nanoparticles positioned on Ag semishells separated by a thin (~5 nm) dielectric layer. The obtaine...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/79535 http://hdl.handle.net/10220/49054 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Metal particles in gap cavities provide an interesting system to achieve hybrid local surface plasmon modes for local field enhancement. Here, we demonstrate a relatively simple method to fabricate Ag nanoparticles positioned on Ag semishells separated by a thin (~5 nm) dielectric layer. The obtained structure can provide strong local electric field enhancement for surface-enhanced Raman scattering (SERS). The fabrication of the ordered array structure was realized by nanosphere self-assembly, atomic layer deposition, and metal thin-film dewetting. Numerical simulation proved that, compared to the conventional metal semishell arrays, the additional Ag particles introduce extra hot spots particularly in the valley regions between adjacent Ag semishells. As a result, the SERS enhancement factor of the metal semishell-based plasmonic structure could be further improved by an order of magnitude. The developed novel plasmonic structure also shows good potential for application in plasmon-enhanced solar water-splitting devices. |
---|