Equivalent circuit modeling of piezoelectric energy harvesters

Last decade has seen growing research interest in vibration energy harvesting using piezoelectric materials. When developing piezoelectric energy harvesting systems, it is advantageous to establish certain analytical or numerical model to predict the system performance. In the last few years, resear...

全面介紹

Saved in:
書目詳細資料
Main Authors: Yang, Yaowen, Tang, Lihua
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2014
主題:
在線閱讀:https://hdl.handle.net/10356/79597
http://hdl.handle.net/10220/24059
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Last decade has seen growing research interest in vibration energy harvesting using piezoelectric materials. When developing piezoelectric energy harvesting systems, it is advantageous to establish certain analytical or numerical model to predict the system performance. In the last few years, researchers from mechanical engineering established distributed models for energy harvester but simplified the energy harvesting circuit in the analytical derivation. While, researchers from electrical engineering concerned the modeling of practical energy harvesting circuit but tended to simplify the structural and mechanical conditions. The challenges for accurate modeling of such electromechanical coupling systems remain when complicated mechanical conditions and practical energy harvesting circuit are considered in system design. In this article, the aforementioned problem is addressed by employing an equivalent circuit model, which bridges structural modeling and electrical simulation. First, the parameters in the equivalent circuit model are identified from theoretical analysis and finite element analysis for simple and complex structures, respectively. Subsequently, the equivalent circuit model considering multiple modes of the system is established and simulated in the SPICE software. Two validation examples are given to verify the accuracy of the proposed method, and one further example illustrates its capability of dealing with complicated structures and non-linear circuits.