Skeleton body pose tracking from efficient three-dimensional motion estimation and volumetric reconstruction
We address the problem of body pose tracking in a scenario of multiple camera setup with the aim of recovering body motion robustly and accurately. The tracking is performed on three-dimensional (3D) space using 3D data, including colored volume and 3D optical flow, which are reconstructed at each t...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/79884 http://hdl.handle.net/10220/10888 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We address the problem of body pose tracking in a scenario of multiple camera setup with the aim of recovering body motion robustly and accurately. The tracking is performed on three-dimensional (3D) space using 3D data, including colored volume and 3D optical flow, which are reconstructed at each time step. We introduce strategies to compute multiple camera-based 3D optical flow and have attained efficient and robust 3D motion estimation. Body pose estimation starts with a prediction using 3D optical flow and then is changed to a lower-dimensional global optimization problem. Our method utilizes a voxel subject-specific body model, exploits multiple 3D image cues, and incorporates physical constraints into a stochastic particle-based search initialized from the deterministic prediction and stochastic sampling. It leads to a robust 3D pose tracker. Experiments on publicly available sequences show the robustness and accuracy of our approach. |
---|