Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction
An effective physiological pain assessment method that complements the gold standard of self-report is highly desired in pain clinical research and practice. Recent studies have shown that pain-evoked electroencephalography (EEG) responses could be used as a readout of perceived pain intensity. Exis...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80433 http://hdl.handle.net/10220/46549 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-80433 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-804332023-12-29T06:51:46Z Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction Hung, Yeung Sam Zhang, Zhiguo Huang, Gan Tu, Yiheng Tan, Ao Bai, Yanru School of Chemical and Biomedical Engineering Pain-evoked EEG Spontaneous EEG DRNTU::Engineering::Chemical engineering An effective physiological pain assessment method that complements the gold standard of self-report is highly desired in pain clinical research and practice. Recent studies have shown that pain-evoked electroencephalography (EEG) responses could be used as a readout of perceived pain intensity. Existing EEG-based pain assessment is normally achieved by cross-individual prediction (i.e., to train a prediction model from a group of individuals and to apply the model on a new individual), so its performance is seriously hampered by the substantial inter-individual variability in pain-evoked EEG responses. In this study, to reduce the inter-individual variability in pain-evoked EEG and to improve the accuracy of cross-individual pain prediction, we examined the relationship between pain-evoked EEG, spontaneous EEG, and pain perception on a pain EEG dataset, where a large number of laser pulses (>100) with a wide energy range were delivered. Motivated by our finding that an individual's pain-evoked EEG responses is significantly correlated with his/her spontaneous EEG in terms of magnitude, we proposed a normalization method for pain-evoked EEG responses using one's spontaneous EEG to reduce the inter-individual variability. In addition, a nonlinear relationship between the level of pain perception and pain-evoked EEG responses was obtained, which inspired us to further develop a new two-stage pain prediction strategy, a binary classification of low-pain and high-pain trials followed by a continuous prediction for high-pain trials only, both of which used spontaneous-EEG-normalized magnitudes of evoked EEG responses as features. Results show that the proposed normalization strategy can effectively reduce the inter-individual variability in pain-evoked responses, and the two-stage pain prediction method can lead to a higher prediction accuracy. MOE (Min. of Education, S’pore) Published version 2018-11-02T07:49:23Z 2019-12-06T13:49:19Z 2018-11-02T07:49:23Z 2019-12-06T13:49:19Z 2016 Journal Article Bai, Y., Huang, G., Tu, Y., Tan, A., Hung, Y. S., & Zhang, Z. (2016). Normalization of Pain-Evoked Neural Reponses Using Spontaneous EEG Improves the Performance of EEG-Based Cross-Individual Pain Prediction. Frontiers in Computational Neuroscience, 10, 31-. doi:10.3389/fncom.2016.00031 https://hdl.handle.net/10356/80433 http://hdl.handle.net/10220/46549 10.3389/fncom.2016.00031 27148028 en Frontiers in Computational Neuroscience © 2016 Bai, Huang, Tu, Tan, Hung and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. 10 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Pain-evoked EEG Spontaneous EEG DRNTU::Engineering::Chemical engineering |
spellingShingle |
Pain-evoked EEG Spontaneous EEG DRNTU::Engineering::Chemical engineering Hung, Yeung Sam Zhang, Zhiguo Huang, Gan Tu, Yiheng Tan, Ao Bai, Yanru Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
description |
An effective physiological pain assessment method that complements the gold standard of self-report is highly desired in pain clinical research and practice. Recent studies have shown that pain-evoked electroencephalography (EEG) responses could be used as a readout of perceived pain intensity. Existing EEG-based pain assessment is normally achieved by cross-individual prediction (i.e., to train a prediction model from a group of individuals and to apply the model on a new individual), so its performance is seriously hampered by the substantial inter-individual variability in pain-evoked EEG responses. In this study, to reduce the inter-individual variability in pain-evoked EEG and to improve the accuracy of cross-individual pain prediction, we examined the relationship between pain-evoked EEG, spontaneous EEG, and pain perception on a pain EEG dataset, where a large number of laser pulses (>100) with a wide energy range were delivered. Motivated by our finding that an individual's pain-evoked EEG responses is significantly correlated with his/her spontaneous EEG in terms of magnitude, we proposed a normalization method for pain-evoked EEG responses using one's spontaneous EEG to reduce the inter-individual variability. In addition, a nonlinear relationship between the level of pain perception and pain-evoked EEG responses was obtained, which inspired us to further develop a new two-stage pain prediction strategy, a binary classification of low-pain and high-pain trials followed by a continuous prediction for high-pain trials only, both of which used spontaneous-EEG-normalized magnitudes of evoked EEG responses as features. Results show that the proposed normalization strategy can effectively reduce the inter-individual variability in pain-evoked responses, and the two-stage pain prediction method can lead to a higher prediction accuracy. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Hung, Yeung Sam Zhang, Zhiguo Huang, Gan Tu, Yiheng Tan, Ao Bai, Yanru |
format |
Article |
author |
Hung, Yeung Sam Zhang, Zhiguo Huang, Gan Tu, Yiheng Tan, Ao Bai, Yanru |
author_sort |
Hung, Yeung Sam |
title |
Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
title_short |
Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
title_full |
Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
title_fullStr |
Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
title_full_unstemmed |
Normalization of pain-evoked neural reponses using spontaneous EEG improves the performance of EEG-based cross-individual pain prediction |
title_sort |
normalization of pain-evoked neural reponses using spontaneous eeg improves the performance of eeg-based cross-individual pain prediction |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/80433 http://hdl.handle.net/10220/46549 |
_version_ |
1787136750055849984 |