Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for su...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80459 http://hdl.handle.net/10220/46563 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-80459 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-804592022-02-16T16:26:57Z Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals Prasad, Vinod Achutavarrier Zaidi, Ali Danish Robinson, Neethu Rana, Mohit Guan, Cuntai Birbaumer, Niels Sitaram, Ranganatha Vasilaki, Eleni School of Computer Science and Engineering DRNTU::Engineering::Computer science and engineering Overt and Covert Movements fNIRS Signals Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. Published version 2018-11-05T08:37:04Z 2019-12-06T13:49:59Z 2018-11-05T08:37:04Z 2019-12-06T13:49:59Z 2016 Journal Article Robinson, N., Zaidi, A. D., Rana, M., Prasad, V. A., Guan, C., Birbaumer, N., & Sitaram, R. (2016). Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals. PLOS ONE, 11(7), e0159959-. doi:10.1371/journal.pone.0159959 https://hdl.handle.net/10356/80459 http://hdl.handle.net/10220/46563 10.1371/journal.pone.0159959 27467528 en PLOS ONE © 2016 Robinson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 21 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering Overt and Covert Movements fNIRS Signals |
spellingShingle |
DRNTU::Engineering::Computer science and engineering Overt and Covert Movements fNIRS Signals Prasad, Vinod Achutavarrier Zaidi, Ali Danish Robinson, Neethu Rana, Mohit Guan, Cuntai Birbaumer, Niels Sitaram, Ranganatha Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
description |
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. |
author2 |
Vasilaki, Eleni |
author_facet |
Vasilaki, Eleni Prasad, Vinod Achutavarrier Zaidi, Ali Danish Robinson, Neethu Rana, Mohit Guan, Cuntai Birbaumer, Niels Sitaram, Ranganatha |
format |
Article |
author |
Prasad, Vinod Achutavarrier Zaidi, Ali Danish Robinson, Neethu Rana, Mohit Guan, Cuntai Birbaumer, Niels Sitaram, Ranganatha |
author_sort |
Prasad, Vinod Achutavarrier |
title |
Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
title_short |
Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
title_full |
Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
title_fullStr |
Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
title_full_unstemmed |
Real-time subject-independent pattern classification of overt and covert movements from fNIRS signals |
title_sort |
real-time subject-independent pattern classification of overt and covert movements from fnirs signals |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/80459 http://hdl.handle.net/10220/46563 |
_version_ |
1725985592302370816 |