Seasonal and Interannual Variability of Wet and Dry Spells over Two Urban Regions in the Western Maritime Continent
Daily rainfall data from two urban regions in Southeast Asia are analyzed to study seasonal and interannual variability of wet and dry spells. The analysis is carried out using 35 years of data from Singapore and 23 years of data from Jakarta. The frequency distribution of wet (dry) spells and their...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80704 http://hdl.handle.net/10220/42196 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Daily rainfall data from two urban regions in Southeast Asia are analyzed to study seasonal and interannual variability of wet and dry spells. The analysis is carried out using 35 years of data from Singapore and 23 years of data from Jakarta. The frequency distribution of wet (dry) spells and their relative contribution to the total number of wet (dry) days and to the total rainfall are studied using 15 statistical indicators. At the annual scale, Singapore has a greater number of wet spells and a larger mean wet spell length compared to Jakarta. However, both cities have equal probability of extreme wet spells. Seasonal-scale analysis shows that Singapore is drier (wetter) than Jakarta during boreal winter (summer). The probability of extreme wet spells is lower (higher) for Singapore than Jakarta during boreal winter (summer). The results show a stronger contrast between Singapore and Jakarta during boreal summer. The study also examined the time series of Singapore wet and dry spell indicators for the presence of interannual trends. The results indicate statistically significant upward trends for a majority of wet spell indicators. The wet day percentage and mean wet spell length are increasing at 2.0% decade−1 and 0.18 days decade−1, respectively. Analysis of dynamic and thermodynamic variables from ERA-Interim during the study period indicates a strengthening of low-level convergence and vertical motion and an increase in specific humidity and atmospheric instability (convective available potential energy), which explain the increasing trends observed in Singapore wet spell indicators. |
---|