Reliability assessment of ultimate limit state of twin caverns
Construction of a cavern in close proximity to an existing cavern modifies the state of stresses and movements in a zone around the existing cavern, as some degree of interaction between these two caverns generally takes place. This study investigates the interaction of two parallel caverns and the...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80761 http://hdl.handle.net/10220/42219 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Construction of a cavern in close proximity to an existing cavern modifies the state of stresses and movements in a zone around the existing cavern, as some degree of interaction between these two caverns generally takes place. This study investigates the interaction of two parallel caverns and the influence of such interaction on stress-induced global stability in terms of a global factor of safety. A series of finite difference analyses were performed to derive the global factor of safety of a system of two parallel and adjacent caverns. A mathematical response surface model was then built using the multivariate adaptive regression splines (MARS) approach and a series of charts based on this surrogate model were developed to relate the global factor of safety to the critical parameters. The built MARS model is of high accuracy and is simple to interpret and can be used to perform probabilistic assessment of ultimate limit state of twin caverns. |
---|