The logarithmic law of random determinant
Consider the square random matrix An=(aij)n,n, where {aij:=a(n)ij,i,j=1,…,n} is a collection of independent real random variables with means zero and variances one.
Saved in:
Main Authors: | Bao, Zhigang, Pan, Guangming, Zhou, Wang |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/80964 http://hdl.handle.net/10220/38998 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test
由: Bai, Zhidong, et al.
出版: (2020) -
Limit theorems for Markov random walks
由: Tang, L.C.
出版: (2014) -
Convergence of the empirical spectral distribution function of Beta matrices
由: Bai, Zhidong, et al.
出版: (2015) -
Error flatten logarithm approximation for graphics processing unit
由: Zhu, M., et al.
出版: (2014) -
Large deviations and law of the iterated logarithm for partial sums normalized by the largest absolute observation
由: Horváth, L., et al.
出版: (2014)