Tracing where and who provenance in Linked Data: A calculus
Linked Data provides some sensible guidelines for publishing and consuming data on the Web. Data published on the Web has no inherent truth, yet its quality can often be assessed based on its provenance. This work introduces a new approach to provenance for Linked Data. The simplest notion of proven...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80965 http://hdl.handle.net/10220/39002 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Linked Data provides some sensible guidelines for publishing and consuming data on the Web. Data published on the Web has no inherent truth, yet its quality can often be assessed based on its provenance. This work introduces a new approach to provenance for Linked Data. The simplest notion of provenance–viz., a named graph indicating where the data is now–is extended with a richer provenance format. The format reflects the behaviour of processes interacting with Linked Data, tracing where the data has been published and who published it. An executable model is presented based on abstract syntax and operational semantics, providing a proof of concept and the means to statically evaluate provenance driven access control using a type system. |
---|