Multifeature Extreme Ordinal Ranking Machine for Facial Age Estimation
Recently the state-of-the-art facial age estimation methods are almost originated from solving complicated mathematical optimization problems and thus consume huge quantities of time in the training process. To refrain from such algorithm complexity while maintaining a high estimation accuracy, we p...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81055 http://hdl.handle.net/10220/39103 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recently the state-of-the-art facial age estimation methods are almost originated from solving complicated mathematical optimization problems and thus consume huge quantities of time in the training process. To refrain from such algorithm complexity while maintaining a high estimation accuracy, we propose a multifeature extreme ordinal ranking machine (MFEORM) for facial age estimation. Experimental results clearly demonstrate that the proposed approach can sharply reduce the runtime (even up to nearly one hundred times faster) while achieving comparable or better estimation performances than the state-of-the-art approaches. The inner properties of MFEORM are further explored with more advantages. |
---|