Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice
We introduce a conceptually simple and experimentally feasible method to realize and detect photonic topological Chern insulators with a one-dimensional circuit quantum electrodynamics lattice. By periodically modulating the couplings in this lattice, we show that this one-dimensional model can be m...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Online Access: | https://hdl.handle.net/10356/81103 http://hdl.handle.net/10220/39121 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We introduce a conceptually simple and experimentally feasible method to realize and detect photonic topological Chern insulators with a one-dimensional circuit quantum electrodynamics lattice. By periodically modulating the couplings in this lattice, we show that this one-dimensional model can be mapped into a two-dimensional Chern insulator model. In addition to allowing the study of photonic Chern insulators, this approach also provides a natural platform to realize experimentally Laughlin's pumping argument. Remarkably, based on the scattering theory of topological insulators and input-output formalism, we find that both the photonic edge state and topological invariant can be unambiguously probed with a simple dissipative few-resonator circuit-QED network. |
---|