Contribution of the Hydration Force to Vesicle Adhesion on Titanium Oxide

Titanium oxide is a biocompatible material that supports vesicle adhesion. Depending on experimental parameters, adsorbed vesicles remain intact or rupture spontaneously. Vesicle rupture has been attributed to electrostatic attraction between vesicles and titanium oxide, although the relative contri...

Full description

Saved in:
Bibliographic Details
Main Authors: Jackman, Joshua A., Zan, Goh Haw, Zhao, Zhilei, Cho, Nam-Joon
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/81106
http://hdl.handle.net/10220/40637
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Titanium oxide is a biocompatible material that supports vesicle adhesion. Depending on experimental parameters, adsorbed vesicles remain intact or rupture spontaneously. Vesicle rupture has been attributed to electrostatic attraction between vesicles and titanium oxide, although the relative contribution of various interfacial forces remains to be clarified. Herein, we investigated the influence of vesicle surface charge on vesicle adsorption onto titanium oxide and observed that electrostatic attraction is insufficient for vesicle rupture. Following this line of evidence, a continuum model based on the DLVO forces and a non-DLVO hydration force was applied to investigate the role of different interfacial forces in modulating the lipid–substrate interaction. Within an experimentally significant range of conditions, the model shows that the magnitude of the repulsive hydration force strongly influences the behavior of adsorbed vesicles, thereby supporting that the hydration force makes a strong contribution to the fate of adsorbed vesicles on titanium oxide. The findings are consistent with literature reports concerning phospholipid assemblies on solid supports and nanoparticles and underscore the importance of the hydration force in influencing the behavior of phospholipid films on hydrophilic surfaces.