Coherent optical control of polarization with a critical metasurface

We present a mechanism by which a metamaterial surface, or metasurface, can act as an ideal phase-controlled rotatable linear polarizer. Using coupled-mode theory and the idea of coherent perfect absorption into auxiliary polarization channels, we show how the losses and near-field couplings on the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kang, Ming, Chong, Yi Dong
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2015
主題:
在線閱讀:https://hdl.handle.net/10356/81116
http://hdl.handle.net/10220/39123
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We present a mechanism by which a metamaterial surface, or metasurface, can act as an ideal phase-controlled rotatable linear polarizer. Using coupled-mode theory and the idea of coherent perfect absorption into auxiliary polarization channels, we show how the losses and near-field couplings on the metasurface can be balanced so that, with equal-power linearly polarized beams incident on each side, varying the relative phase rotates the polarization angles of the output beams while maintaining zero ellipticity. The system can be described by a non-Hermitian effective Hamiltonian which is parity-time (PT) symmetric, although there is no actual gain present; perfect polarization conversion occurs at the eigenfrequencies of this Hamiltonian, and the polarization rotating behavior occurs at the critical point of its PT-breaking transition.