TiO2-nanoparticles shield HPEKs against ZnO-induced genotoxicity

Usage of sunscreens has become commonplace amongst outdoor sports. Recently, nanomaterials have gained increasing market share as ingredients in sunscreens (as well as other topically applied products). In particular ZnO and TiO2 nanoparticles (ZNP and TNP) have found their niche in this application...

Full description

Saved in:
Bibliographic Details
Main Authors: Kathawala, Mustafa Hussain, Yun, Zhao, Chu, Justin Jang Hann, Ng, Kee Woei, Loo, Say Chye Joachim
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/81142
http://hdl.handle.net/10220/40664
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Usage of sunscreens has become commonplace amongst outdoor sports. Recently, nanomaterials have gained increasing market share as ingredients in sunscreens (as well as other topically applied products). In particular ZnO and TiO2 nanoparticles (ZNP and TNP) have found their niche in this application. This study investigated the safety aspects of these nanoparticles from a combinatorial exposure point of view. Focus was on investigating generation of oxidative stress and induction of DNA damage which the two nanoparticles caused. It was found that TNPs triggered stronger oxidative stress than ZNPs but ZNPs remained more potent at causing DNA damage. The individual mechanisms of DNA damage were found to be through oxidative stress for TNPs (indirect genotoxicity) and through Zn2 + ion nuclear uptake resulting in DNA damage for ZNP (direct genotoxicity). Interesting, it was found that intracellular TNPs could adsorb Zn2 + ions and lower their nuclear uptake in turn shielding the HPEKs from ZNP-induced genotoxicity. Toxicological assessments of dual nanoparticle systems remain an unstudied area and based on the results obtained deserves further consideration.