Gold nanorods as photothermal agents and autofluorescence enhancer to track cell death during plasmonic photothermal therapy
The transverse and longitudinal plasmon resonance in gold nanorods can be exploited to localize the photothermal therapy and influence the fluorescence to monitor the treatment outcome at the same time. While the longitudinal plasmon peak contributes to the photothermal effect, the transverse peak c...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81179 http://hdl.handle.net/10220/39192 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The transverse and longitudinal plasmon resonance in gold nanorods can be exploited to localize the photothermal therapy and influence the fluorescence to monitor the treatment outcome at the same time. While the longitudinal plasmon peak contributes to the photothermal effect, the transverse peak can enhance fluorescence. After cells take in PEGylated nanorods through endocytosis, autofluorescence from endogenous fluorophores such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in the mitochondria is enhanced two times, which is a good indicator of the respiratory status of the cell. When cells are illuminated continuously with near infrared laser, the temperature reaches the hyperthermic region within the first four minutes, which demonstrates the efficiency of gold nanorods in photothermal therapy. The cell viability test and autofluorescence intensity show good correlation indicating the progress of cell death over time. |
---|