A CMOS low dropout regulator for internet of things

With the growing demand of portable devices or the emergence of Internet-of-Things (IoT) applications, the push for small-size and ultra-low-power Low Dropout (LDO) Regulators becomes the key design agenda. Unfortunately, when approaching ultra-low power, the transient performance metrics of the reg...

Full description

Saved in:
Bibliographic Details
Main Author: Jiang, Yushan
Other Authors: Chan Pak Kwong
Format: Theses and Dissertations
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/81268
http://hdl.handle.net/10220/47511
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-81268
record_format dspace
spelling sg-ntu-dr.10356-812682023-07-04T16:24:42Z A CMOS low dropout regulator for internet of things Jiang, Yushan Chan Pak Kwong School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering With the growing demand of portable devices or the emergence of Internet-of-Things (IoT) applications, the push for small-size and ultra-low-power Low Dropout (LDO) Regulators becomes the key design agenda. Unfortunately, when approaching ultra-low power, the transient performance metrics of the regulator are often significantly reduced. Moreover, the parasitic poles of regulator’s devices, which are located at low frequencies, can lead to the instability issue. As such, these undesirable effects pose the serious design challenges in the context of ultra-low quiescent power design constraints. To tackle the stated problems, an ultra-low quiescent power capacitorless LDO regulator is proposed with employment of the transistor degeneration frequency compensation (TDFC) in the adaptive frequency compensation scheme. It can deliver a full loading current range from 0 to 100 mA and provide a 1 V output voltage from a 1.2 V power supply at a capacitive load of 100 pF whilst consuming only 407 nA for the entire regulator architecture. The total on-chip capacitance is 6.5 pF. On top of that, a distributed overshoot reduction (DOVSR) topology is also proposed to tackle the overshoot reduction problem under ultra-low quiescent circuit design. By incorporating the TDFC scheme and the feedforward biasing design, this results in reduced settling time and overshoot voltage with respect to that of the conventional circuit technique. The proposed design was fabricated using CMOS 0.18 µm technology for proof of concept. The measurement results have shown that the regulator output can settle within 1.56 μs with 35.33 mV in overshoot voltage at a load current transition step from 0 A to 100 mA. Besides, through the use of adaptively-biased design in conjunction with multiple loop feedback architecture, the undershoot voltage attains 117 mV despite of very limited regulator’s system bandwidth at ultra-low quiescent biasing state. The regulator has achieved the output-capacitorless based transient Figure-of-Merit (FOM) of 1.42 mV and output capacitor based transient FOM of 0.475 fs, demonstrating that it can offer excellent transient performance even under ultra-low quiescent biasing condition and zero minimum load current. Furthermore, the proposed work also achieves comparable result in terms of undershoot/overshoot voltage, settling time, PSR and so forth. The performance comparison has validated that the regulator outperforms that of the representative reported works, advancing state-of-the-art result. Master of Engineering 2019-01-18T14:15:12Z 2019-12-06T14:26:59Z 2019-01-18T14:15:12Z 2019-12-06T14:26:59Z 2018 Thesis Jiang, Y. (2018). A CMOS low dropout regulator for internet of things. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/81268 http://hdl.handle.net/10220/47511 10.32657/10220/47511 en 119 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Jiang, Yushan
A CMOS low dropout regulator for internet of things
description With the growing demand of portable devices or the emergence of Internet-of-Things (IoT) applications, the push for small-size and ultra-low-power Low Dropout (LDO) Regulators becomes the key design agenda. Unfortunately, when approaching ultra-low power, the transient performance metrics of the regulator are often significantly reduced. Moreover, the parasitic poles of regulator’s devices, which are located at low frequencies, can lead to the instability issue. As such, these undesirable effects pose the serious design challenges in the context of ultra-low quiescent power design constraints. To tackle the stated problems, an ultra-low quiescent power capacitorless LDO regulator is proposed with employment of the transistor degeneration frequency compensation (TDFC) in the adaptive frequency compensation scheme. It can deliver a full loading current range from 0 to 100 mA and provide a 1 V output voltage from a 1.2 V power supply at a capacitive load of 100 pF whilst consuming only 407 nA for the entire regulator architecture. The total on-chip capacitance is 6.5 pF. On top of that, a distributed overshoot reduction (DOVSR) topology is also proposed to tackle the overshoot reduction problem under ultra-low quiescent circuit design. By incorporating the TDFC scheme and the feedforward biasing design, this results in reduced settling time and overshoot voltage with respect to that of the conventional circuit technique. The proposed design was fabricated using CMOS 0.18 µm technology for proof of concept. The measurement results have shown that the regulator output can settle within 1.56 μs with 35.33 mV in overshoot voltage at a load current transition step from 0 A to 100 mA. Besides, through the use of adaptively-biased design in conjunction with multiple loop feedback architecture, the undershoot voltage attains 117 mV despite of very limited regulator’s system bandwidth at ultra-low quiescent biasing state. The regulator has achieved the output-capacitorless based transient Figure-of-Merit (FOM) of 1.42 mV and output capacitor based transient FOM of 0.475 fs, demonstrating that it can offer excellent transient performance even under ultra-low quiescent biasing condition and zero minimum load current. Furthermore, the proposed work also achieves comparable result in terms of undershoot/overshoot voltage, settling time, PSR and so forth. The performance comparison has validated that the regulator outperforms that of the representative reported works, advancing state-of-the-art result.
author2 Chan Pak Kwong
author_facet Chan Pak Kwong
Jiang, Yushan
format Theses and Dissertations
author Jiang, Yushan
author_sort Jiang, Yushan
title A CMOS low dropout regulator for internet of things
title_short A CMOS low dropout regulator for internet of things
title_full A CMOS low dropout regulator for internet of things
title_fullStr A CMOS low dropout regulator for internet of things
title_full_unstemmed A CMOS low dropout regulator for internet of things
title_sort cmos low dropout regulator for internet of things
publishDate 2019
url https://hdl.handle.net/10356/81268
http://hdl.handle.net/10220/47511
_version_ 1772826511185805312