DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum
Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81297 http://hdl.handle.net/10220/47478 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-81297 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-812972020-09-26T22:03:01Z DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum Yang, Shiliang Zhang, Liangqi Luo, Kun Chew, Jia Wei School of Chemical and Biomedical Engineering Nanyang Environment and Water Research Institute Singapore Membrane Technology Centre DRNTU::Engineering::Chemical engineering Optical Fibers Musical Instruments Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes. NRF (Natl Research Foundation, S’pore) Published version 2019-01-16T03:34:44Z 2019-12-06T14:27:45Z 2019-01-16T03:34:44Z 2019-12-06T14:27:45Z 2017 Journal Article Yang, S., Zhang, L., Luo, K., & Chew, J. W. (2017). DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum. Physics of Fluids, 29(12), 123301-. doi:10.1063/1.5008297 1070-6631 https://hdl.handle.net/10356/81297 http://hdl.handle.net/10220/47478 10.1063/1.5008297 en Physics of Fluids © 2017 American Institute of Physics. All rights reserved. This paper was published in Physics of Fluids and is made available with permission of American Institute of Physics. 15 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Chemical engineering Optical Fibers Musical Instruments |
spellingShingle |
DRNTU::Engineering::Chemical engineering Optical Fibers Musical Instruments Yang, Shiliang Zhang, Liangqi Luo, Kun Chew, Jia Wei DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
description |
Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Yang, Shiliang Zhang, Liangqi Luo, Kun Chew, Jia Wei |
format |
Article |
author |
Yang, Shiliang Zhang, Liangqi Luo, Kun Chew, Jia Wei |
author_sort |
Yang, Shiliang |
title |
DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
title_short |
DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
title_full |
DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
title_fullStr |
DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
title_full_unstemmed |
DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
title_sort |
dem study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/81297 http://hdl.handle.net/10220/47478 |
_version_ |
1681059391508316160 |