A narrow-bandgap benzobisthiadiazole derivative with high near-infrared photothermal conversion efficiency and robust photostability for cancer therapy
Photothermal therapy has emerged as a promising tool for treatment of diseases such as cancers. Previous photothermal agents have been largely limited to inorganic nanomaterials and conductive polymers that are barely biodegradable, thus raising issues of long-term toxicity for clinical applications...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81356 http://hdl.handle.net/10220/39222 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Photothermal therapy has emerged as a promising tool for treatment of diseases such as cancers. Previous photothermal agents have been largely limited to inorganic nanomaterials and conductive polymers that are barely biodegradable, thus raising issues of long-term toxicity for clinical applications. Here we report a new photothermal agent based on colloidal nanoparticles formed by a small-molecular dye, benzo[1,2-c;4,5-c′]bis[1,2,5]thiadiazole-4,7-bis(5-(2-ethylhexyl)thiophene). These nanoparticles showed strong near-infrared absorption, robust photostability and high therapeutic efficiency for photothermal treatment of cancer cells. |
---|