Fully-Additive Printed Electronics: Transistor model, process variation and fundamental circuit designs

Printed Electronics (PE) on flexible substrates (e.g. plastic-film) is an emerging technology that potentially complements silicon-based electronics. To facilitate the design and realization of PE analog and digital circuits for the augmentation of signal processing thereto, we present in this paper...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Xi, Ge, Tong, Chang, Joseph Sylvester
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/81368
http://hdl.handle.net/10220/39238
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Printed Electronics (PE) on flexible substrates (e.g. plastic-film) is an emerging technology that potentially complements silicon-based electronics. To facilitate the design and realization of PE analog and digital circuits for the augmentation of signal processing thereto, we present in this paper, a novel and comprehensive printed transistor model that is simple, accurate and compatible with industry-standard IC (integrated circuit) electronic design automation tools. Unlike reported models, the proposed comprehensive model accommodates and accurately models the effect of the channel length on carrier mobility, leakage current and parasitic capacitances, and is valid for all transistor operating regions, from cut-off to supra-threshold regions. The proposed comprehensive model further embodies process variations (statistical data) and matching based on various layout techniques. These comprehensive modelings are imperative for the practical design and simulation of PE circuits, including manufacturability and implications with respect to the challenges of PE circuits. On the basis of the proposed comprehensive model, several fundamental analog and digital PE circuits, based on conventional and novel methods, are designed and realized on plastic-films. Their measured parameters agree well with that obtained from simulations (using the model derived herein), depicting the efficacy of the comprehensive model. This model is particularly useful as it provides invaluable insights to PE circuit and system designers.