Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry
In this study, epoxy resin was microencapsulated through in situ polymerization in an oil-in-water emulsion, and amine was loaded into etched glass bubbles (GBs) as a curing agent for the microencapsulated epoxy resin. The purpose was to develop a two-component-self-healing system. The two healing a...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81374 http://hdl.handle.net/10220/39219 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-81374 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-813742020-03-07T13:19:22Z Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry Nay, Win Khun Zhang, He Yang, Jinglei School of Mechanical and Aerospace Engineering Friction Wear Microcapsules Glass beads Epoxy Self-healing In this study, epoxy resin was microencapsulated through in situ polymerization in an oil-in-water emulsion, and amine was loaded into etched glass bubbles (GBs) as a curing agent for the microencapsulated epoxy resin. The purpose was to develop a two-component-self-healing system. The two healing agent carriers were co-incorporated in the epoxy matrix to form novel epoxy composites for tribological applications. The tribological results clearly showed that an increase in healing agent carrier content significantly decreased the friction and wear of the epoxy composites tested against a 6 mm steel ball under different normal loads. This was due to the self-lubricating and self-healing of the composites with released core liquids via the rupture of healing agent carriers during the wear test. It could be concluded that the co-incorporation of two healing agent carriers was a potential way to achieve a significant improvement in the tribological properties of epoxy matrix composites. ASTAR (Agency for Sci., Tech. and Research, S’pore) 2015-12-23T08:31:34Z 2019-12-06T14:29:32Z 2015-12-23T08:31:34Z 2019-12-06T14:29:32Z 2015 Journal Article Nay, W. K., Zhang, H., & Yang, J. (2015). Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry. Journal of Applied Mechanics, 82(5), 051006-. 0021-8936 https://hdl.handle.net/10356/81374 http://hdl.handle.net/10220/39219 10.1115/1.4030029 en Journal of Applied Mechanics © 2015 American Society of Mechanical Engineers (ASME). |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Friction Wear Microcapsules Glass beads Epoxy Self-healing |
spellingShingle |
Friction Wear Microcapsules Glass beads Epoxy Self-healing Nay, Win Khun Zhang, He Yang, Jinglei Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
description |
In this study, epoxy resin was microencapsulated through in situ polymerization in an oil-in-water emulsion, and amine was loaded into etched glass bubbles (GBs) as a curing agent for the microencapsulated epoxy resin. The purpose was to develop a two-component-self-healing system. The two healing agent carriers were co-incorporated in the epoxy matrix to form novel epoxy composites for tribological applications. The tribological results clearly showed that an increase in healing agent carrier content significantly decreased the friction and wear of the epoxy composites tested against a 6 mm steel ball under different normal loads. This was due to the self-lubricating and self-healing of the composites with released core liquids via the rupture of healing agent carriers during the wear test. It could be concluded that the co-incorporation of two healing agent carriers was a potential way to achieve a significant improvement in the tribological properties of epoxy matrix composites. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Nay, Win Khun Zhang, He Yang, Jinglei |
format |
Article |
author |
Nay, Win Khun Zhang, He Yang, Jinglei |
author_sort |
Nay, Win Khun |
title |
Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
title_short |
Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
title_full |
Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
title_fullStr |
Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
title_full_unstemmed |
Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry |
title_sort |
wear resistance of polymers with encapsulated epoxy-amine self-healing chemistry |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/81374 http://hdl.handle.net/10220/39219 |
_version_ |
1681037453620674560 |