The Excluded Minors for Isometric Realizability in the Plane

Let $G$ be a graph and $p \in [1, \infty]$. The parameter $f_p(G)$ is the least integer $k$ such that for all $m$ and all vectors $(r_v)_{v \in V(G)} \subseteq \mathbb{R}^m$, there exist vectors $(q_v)_{v \in V(G)} \subseteq \mathbb{R}^k$ satisfying $\|r_v-r_w\|_p=\|q_v-q_w\|_p$ for all $vw\in E(G)....

Full description

Saved in:
Bibliographic Details
Main Authors: Fiorini, Samuel, Huynh, Tony, Joret, Gwenaël, Varvitsiotis, Antonios
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/81454
http://hdl.handle.net/10220/43485
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Be the first to leave a comment!
You must be logged in first