A novel phase congruency based descriptor for dynamic facial expression analysis
Representation and classification of dynamic visual events in videos have been an active field of research. This work proposed a novel spatio-temporal descriptor based on phase congruency concept and applied it to recognize facial expression from video sequences. The proposed descriptor comprises hi...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81599 http://hdl.handle.net/10220/39591 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Representation and classification of dynamic visual events in videos have been an active field of research. This work proposed a novel spatio-temporal descriptor based on phase congruency concept and applied it to recognize facial expression from video sequences. The proposed descriptor comprises histograms of dominant phase congruency over multiple 3D orientations to describe both spatial and temporal information of a dynamic event. The advantages of our proposed approach are local and dynamic processing, high accuracy, robustness to image scale variation, and illumination changes. We validated the performance of our proposed approach using the Cohn-Kanade (CK+) database where we achieved 95.44% accuracy in detecting six basic emotions. The approach was also shown to increase classification rates over the baseline results for the AVEC 2011 video subchallenge in detecting four emotion dimensions. We also validated its robustness to illumination and scale variation using our own collected dataset. |
---|