Rainfall-induced slope failures and preventive measures in Singapore

Steep residual soil slopes are generally characterized by a deep ground water table and a significant thickness of unsaturated soil above the water table. The negative pore-water pressure (matric suction) above the water table provides additional shear strength to the unsaturated soil. The unsaturat...

Full description

Saved in:
Bibliographic Details
Main Authors: Harianto, Rahardjo, Leong, Eng Choon, Alfrendo, Satyanaga, Ng, Yew Song, Tan, Hong Tuan, Hua, Chai Juay
Other Authors: School of Civil and Environmental Engineering
Format: Book
Language:English
Published: Nanyang Technological University and Housing & Development Board 2016
Subjects:
Online Access:https://hdl.handle.net/10356/81805
http://hdl.handle.net/10220/40951
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-81805
record_format dspace
spelling sg-ntu-dr.10356-818052019-12-17T18:06:06Z Rainfall-induced slope failures and preventive measures in Singapore Harianto, Rahardjo Leong, Eng Choon Alfrendo, Satyanaga Ng, Yew Song Tan, Hong Tuan Hua, Chai Juay School of Civil and Environmental Engineering Housing and Development Board Soil erosion Soil stabilization Steep residual soil slopes are generally characterized by a deep ground water table and a significant thickness of unsaturated soil above the water table. The negative pore-water pressure (matric suction) above the water table provides additional shear strength to the unsaturated soil. The unsaturated soil zone is also influenced by the ground surface moisture flux boundary condition changes (i.e. infiltration, evaporation and transpiration). As rain water infiltrates into slope, the matric suction in the soil decreases and as a result, the apparent shear strength associated with matric suction can decrease, causing the slope to become susceptible to failure. The factors which influence slope instability include the geology, topography of the area, soil types, soil properties, local climates (rainfall and evaporation) and water flow patterns within the slope. Generally, the effect of rainfall in inducing slope failures is attributed to the loss of matric suction as the wetting front advances from the ground surface or to the rise in the ground water table within the slope. It is also possible that both processes that occur simultaneously. Rainfall-induced slope failures are common in tropical areas such as Singapore that are covered by residual soils. These failures can pose potential danger to infrastructures and public safety. Therefore, a comprehensive study of the mechanisms associated with rainfall-induced slope failures, the stabilization, protection and repair works of failed slopes is needed. The Housing and Development Board (HDB) has partnered Nanyang Technological University (NTU) to undertake research studies with the objective of better understanding, and providing engineered solutions to rainfall-induced slope failure problems in HDB estates and to investigate the effectiveness of possible novel preventive measures. Unsaturated soil mechanics principles were incorporated into the research programs. The research methodolgy involved, firstly, the determination of relevant unsaturated soil properties together with field instrumentation and the monitoring of several slopes in Singapore. At the same time, computer modeling was undertaken to simulate seepage through unsaturated and saturated soil system in order to incorporate the effects of rainfall on slope stability. 2016-07-18T04:17:48Z 2019-12-06T14:40:48Z 2016-07-18T04:17:48Z 2019-12-06T14:40:48Z 2014 Book Harianto, R., Leong, E. C., Alfrendo, S., Ng, Y. S., Tan, H. T., & Hua, C. J. (2014). Rainfall-induced slope failures and preventive measures in Singapore, i–84. Singapore : Nanyang Technological University. 978-981-07-9250-3 https://hdl.handle.net/10356/81805 http://hdl.handle.net/10220/40951 en © 2014 Nanyang Technological University 94 p. application/pdf Nanyang Technological University and Housing & Development Board
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic Soil erosion
Soil stabilization
spellingShingle Soil erosion
Soil stabilization
Harianto, Rahardjo
Leong, Eng Choon
Alfrendo, Satyanaga
Ng, Yew Song
Tan, Hong Tuan
Hua, Chai Juay
Rainfall-induced slope failures and preventive measures in Singapore
description Steep residual soil slopes are generally characterized by a deep ground water table and a significant thickness of unsaturated soil above the water table. The negative pore-water pressure (matric suction) above the water table provides additional shear strength to the unsaturated soil. The unsaturated soil zone is also influenced by the ground surface moisture flux boundary condition changes (i.e. infiltration, evaporation and transpiration). As rain water infiltrates into slope, the matric suction in the soil decreases and as a result, the apparent shear strength associated with matric suction can decrease, causing the slope to become susceptible to failure. The factors which influence slope instability include the geology, topography of the area, soil types, soil properties, local climates (rainfall and evaporation) and water flow patterns within the slope. Generally, the effect of rainfall in inducing slope failures is attributed to the loss of matric suction as the wetting front advances from the ground surface or to the rise in the ground water table within the slope. It is also possible that both processes that occur simultaneously. Rainfall-induced slope failures are common in tropical areas such as Singapore that are covered by residual soils. These failures can pose potential danger to infrastructures and public safety. Therefore, a comprehensive study of the mechanisms associated with rainfall-induced slope failures, the stabilization, protection and repair works of failed slopes is needed. The Housing and Development Board (HDB) has partnered Nanyang Technological University (NTU) to undertake research studies with the objective of better understanding, and providing engineered solutions to rainfall-induced slope failure problems in HDB estates and to investigate the effectiveness of possible novel preventive measures. Unsaturated soil mechanics principles were incorporated into the research programs. The research methodolgy involved, firstly, the determination of relevant unsaturated soil properties together with field instrumentation and the monitoring of several slopes in Singapore. At the same time, computer modeling was undertaken to simulate seepage through unsaturated and saturated soil system in order to incorporate the effects of rainfall on slope stability.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Harianto, Rahardjo
Leong, Eng Choon
Alfrendo, Satyanaga
Ng, Yew Song
Tan, Hong Tuan
Hua, Chai Juay
format Book
author Harianto, Rahardjo
Leong, Eng Choon
Alfrendo, Satyanaga
Ng, Yew Song
Tan, Hong Tuan
Hua, Chai Juay
author_sort Harianto, Rahardjo
title Rainfall-induced slope failures and preventive measures in Singapore
title_short Rainfall-induced slope failures and preventive measures in Singapore
title_full Rainfall-induced slope failures and preventive measures in Singapore
title_fullStr Rainfall-induced slope failures and preventive measures in Singapore
title_full_unstemmed Rainfall-induced slope failures and preventive measures in Singapore
title_sort rainfall-induced slope failures and preventive measures in singapore
publisher Nanyang Technological University and Housing & Development Board
publishDate 2016
url https://hdl.handle.net/10356/81805
http://hdl.handle.net/10220/40951
_version_ 1681047735539597312