Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac

Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumari, Geeta, Serra, Aida, Shin, Joon, Nguyen, Phuong Q. T., Sze, Siu Kwan, Yoon, Ho Sup, Tam, James P.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/81859
http://hdl.handle.net/10220/39734
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs.