Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films
Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay o...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81903 http://hdl.handle.net/10220/39732 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-81903 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-819032023-07-14T15:50:04Z Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films Yin, Xinmao Majidi, Muhammad Aziz Chi, Xiao Ren, Peng You, Lu Palina, Natalia Yu, Xiaojiang Diao, Caozheng Schmidt, Daniel Wang, Baomin Yang, Ping Breese, Mark B H Wang, Junling Rusydi, Andrivo School of Materials Science & Engineering Jahn-Teller effect Perovskite manganites Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T>195 K and insulating canted-ferromagnetic for T<140 K) with an intermediate metal-like state in ultra-thin La0.7Sr0.3MnO3 (LSMO) film on DyScO3 substrate. Surprisingly, the O2p-Mn3d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn–Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO3 substrate for comparison. Our study reveals that the interplay of the O2p-Mn3d hybridization and the dynamic Jahn–Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. Published version 2016-01-21T03:26:04Z 2019-12-06T14:42:43Z 2016-01-21T03:26:04Z 2019-12-06T14:42:43Z 2015 Journal Article Yin, X., Majidi, M. A., Chi, X., Ren, P., You, L., Palina, N., et al. (2015). Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films. NPG Asia Materials, 7, e196-. 1884-4057 https://hdl.handle.net/10356/81903 http://hdl.handle.net/10220/39732 10.1038/am.2015.65 en NPG Asia Materials This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 7 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Jahn-Teller effect Perovskite manganites |
spellingShingle |
Jahn-Teller effect Perovskite manganites Yin, Xinmao Majidi, Muhammad Aziz Chi, Xiao Ren, Peng You, Lu Palina, Natalia Yu, Xiaojiang Diao, Caozheng Schmidt, Daniel Wang, Baomin Yang, Ping Breese, Mark B H Wang, Junling Rusydi, Andrivo Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
description |
Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T>195 K and insulating canted-ferromagnetic for T<140 K) with an intermediate metal-like state in ultra-thin La0.7Sr0.3MnO3 (LSMO) film on DyScO3 substrate. Surprisingly, the O2p-Mn3d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn–Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO3 substrate for comparison. Our study reveals that the interplay of the O2p-Mn3d hybridization and the dynamic Jahn–Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Yin, Xinmao Majidi, Muhammad Aziz Chi, Xiao Ren, Peng You, Lu Palina, Natalia Yu, Xiaojiang Diao, Caozheng Schmidt, Daniel Wang, Baomin Yang, Ping Breese, Mark B H Wang, Junling Rusydi, Andrivo |
format |
Article |
author |
Yin, Xinmao Majidi, Muhammad Aziz Chi, Xiao Ren, Peng You, Lu Palina, Natalia Yu, Xiaojiang Diao, Caozheng Schmidt, Daniel Wang, Baomin Yang, Ping Breese, Mark B H Wang, Junling Rusydi, Andrivo |
author_sort |
Yin, Xinmao |
title |
Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
title_short |
Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
title_full |
Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
title_fullStr |
Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
title_full_unstemmed |
Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
title_sort |
unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films |
publishDate |
2016 |
url |
https://hdl.handle.net/10356/81903 http://hdl.handle.net/10220/39732 |
_version_ |
1772828526713503744 |