Study on the generalized (p,q)-Laplacian elliptic systems, parabolic systems and integro-differential systems

In this paper, we present the abstract results for the existence and uniqueness of the solution of nonlinear elliptic systems, parabolic systems and integro-differential systems involving the generalized (p,q)-Laplacian operator. Our method makes use of the characteristics of the ranges of linear an...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wei, Li, Agarwal, Ravi P., Wong, Patricia Jia Yiing
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/81914
http://hdl.handle.net/10220/39713
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper, we present the abstract results for the existence and uniqueness of the solution of nonlinear elliptic systems, parabolic systems and integro-differential systems involving the generalized (p,q)-Laplacian operator. Our method makes use of the characteristics of the ranges of linear and nonlinear maximal monotone operators and the subdifferential of a proper, convex, and lower-semi-continuous functional, and we employ some new techniques in the construction of the operators and in proving the properties of the newly defined operators. The systems discussed in this paper and the method used extend and complement some of the previous work.