Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species
Hypochlorite (ClO−) as a highly reactive oxygen species not only acts as a powerful “guarder” in innate host defense but also regulates inflammation-related pathological conditions. Despite the availability of fluorescence probes for detection of ClO− in cells, most of them can only detect ClO− in s...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81929 http://hdl.handle.net/10220/42293 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Hypochlorite (ClO−) as a highly reactive oxygen species not only acts as a powerful “guarder” in innate host defense but also regulates inflammation-related pathological conditions. Despite the availability of fluorescence probes for detection of ClO− in cells, most of them can only detect ClO− in single cellular organelle, limiting the capability to fully elucidate the synergistic effect of different organelles on the generation of ClO−. This study proposes a nanoprobe cocktail approach for multicolor and multiorganelle imaging of ClO− in cells. Two semiconducting oligomers with different π-conjugation length are synthesized, both of which contain phenothiazine to specifically react with ClO− but show different fluorescent color responses. These sensing components are self-assembled into the nanoprobes with the ability to target cellular lysosome and mitochondria, respectively. The mixture of these nanoprobes forms a nano-cocktail that allows for simultaneous imaging of elevated level of ClO− in lysosome and mitochondria according to fluorescence color variations under selective excitation of each nanoprobe. Thus, this study provides a general concept to design probe cocktails for multilocal and multicolor imaging. |
---|