Discovering Class-Specific Spatial Layouts for Scene Recognition

Scene image is a spatial composition of objects and background contexts and finding discriminative spatial layouts is critical for scene recognition. In this letter, we propose an ℓ1-regularized max-margin formulation to discover class-specific spatial layouts by jointly learning the image classifie...

Full description

Saved in:
Bibliographic Details
Main Authors: Weng, Chaoqun, Wang, Hongxing, Yuan, Junsong, Jiang, Xudong
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/82238
http://hdl.handle.net/10220/43502
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Scene image is a spatial composition of objects and background contexts and finding discriminative spatial layouts is critical for scene recognition. In this letter, we propose an ℓ1-regularized max-margin formulation to discover class-specific spatial layouts by jointly learning the image classifier and the class-specific spatial layouts for scene recognition. Unlike previous methods that classify images into different categories either without considering the spatial layouts explicitly or only using class generic spatial layout, our proposed method can discover a sparse combination of class-specific spatial layouts for different scenes and boost the recognition performance. Experiments on scene-15, landuse-21, and MIT indoor-67 datasets validate the advantages of our proposed algorithm.