Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation
This paper investigates deep neural networks (DNN) based on nonlinear feature mapping and statistical linear feature adaptation approaches for reducing reverberation in speech signals. In the nonlinear feature mapping approach, DNN is trained from parallel clean/distorted speech corpus to map reverb...
محفوظ في:
المؤلفون الرئيسيون: | Xiao, Xiong, Zhao, Shengkui, Nguyen, Duc Hoang Ha, Zhong, Xionghu, Jones, Douglas L., Chng, Eng Siong, Li, Haizhou |
---|---|
مؤلفون آخرون: | School of Computer Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/82372 http://hdl.handle.net/10220/39943 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation
بواسطة: Xiao, X, وآخرون
منشور في: (2020) -
Integrating articulatory based features with auditory based features for robust stressed speech recognition
بواسطة: Tin, L.N., وآخرون
منشور في: (2013) -
Analysis and detection of human emotion and stress from speech signals
بواسطة: TIN LAY NWE
منشور في: (2010) -
Noise-Robust Speech Recognition Using Deep Neural Network
بواسطة: LI BO
منشور في: (2014) -
Audio-visual modeling for bimodal speech recognition
بواسطة: Kaynak, M.N., وآخرون
منشور في: (2014)