Minimum-cost control of complex networks
Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in bot...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/82817 http://hdl.handle.net/10220/40298 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective. |
---|