Minimum-cost control of complex networks
Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in bot...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/82817 http://hdl.handle.net/10220/40298 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective. |
---|