Triplet spike time dependent plasticity in a floating-gate synapse
Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementat...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/82906 http://hdl.handle.net/10220/40386 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementation of a synapse using single floating-gate (FG) transistor (and two additional high voltage transistors) that can store a weight in a non-volatile manner and demonstrate the triplet STDP (T-STDP) learning rule developed to explain biologically observed plasticity. We describe a mathematical procedure to obtain control voltages for the FG device for T-STDP and also show measurement results, from a FG synapse fabricated in TSMC 0.35μm CMOS process to support the theory. |
---|