Triplet spike time dependent plasticity in a floating-gate synapse

Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementat...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Gopalakrishnan, Roshan, Basu, Arindam
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2016
الموضوعات:
SNN
BCM
الوصول للمادة أونلاين:https://hdl.handle.net/10356/82906
http://hdl.handle.net/10220/40386
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementation of a synapse using single floating-gate (FG) transistor (and two additional high voltage transistors) that can store a weight in a non-volatile manner and demonstrate the triplet STDP (T-STDP) learning rule developed to explain biologically observed plasticity. We describe a mathematical procedure to obtain control voltages for the FG device for T-STDP and also show measurement results, from a FG synapse fabricated in TSMC 0.35μm CMOS process to support the theory.