Triplet spike time dependent plasticity in a floating-gate synapse
Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementat...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/82906 http://hdl.handle.net/10220/40386 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Synapses plays an important role of learning in a neural network; the learning rules which modify the synaptic strength based on the timing difference between the pre- and post-synaptic spike occurrence is termed as Spike Time Dependent Plasticity (STDP). This paper describes the compact implementation of a synapse using single floating-gate (FG) transistor (and two additional high voltage transistors) that can store a weight in a non-volatile manner and demonstrate the triplet STDP (T-STDP) learning rule developed to explain biologically observed plasticity. We describe a mathematical procedure to obtain control voltages for the FG device for T-STDP and also show measurement results, from a FG synapse fabricated in TSMC 0.35μm CMOS process to support the theory. |
---|